Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuropsychopharmacology ; 48(10): 1455-1464, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37221326

RESUMO

The rostromedial tegmental nucleus (RMTg) encodes negative reward prediction error (RPE) and plays an important role in guiding behavioral responding to aversive stimuli. Previous research has focused on regulation of RMTg activity by the lateral habenula despite studies revealing RMTg afferents from other regions including the frontal cortex. The current study provides a detailed anatomical and functional analysis of cortical input to the RMTg of male rats. Retrograde tracing uncovered dense cortical input to the RMTg spanning the medial prefrontal cortex, the orbitofrontal cortex and anterior insular cortex. Afferents were most dense in the dorsomedial subregion of the PFC (dmPFC), an area that is also implicated in both RPE signaling and aversive responding. RMTg-projecting dmPFC neurons originate in layer V, are glutamatergic, and collateralize to select brain regions. In-situ mRNA hybridization revealed that neurons in this circuit are predominantly D1 receptor-expressing with a high degree of D2 receptor colocalization. Consistent with cFos induction in this neural circuit during exposure to foot shock and shock-predictive cues, optogenetic stimulation of dmPFC terminals in the RMTg drove avoidance. Lastly, acute slice electrophysiology and morphological studies revealed that exposure to repeated foot shock resulted in significant physiological and structural changes consistent with a loss of top-down modulation of RMTg-mediated signaling. Altogether, these data reveal the presence of a prominent cortico-subcortical projection involved in adaptive behavioral responding to aversive stimuli such as foot shock and provide a foundation for future work aimed at exploring alterations in circuit function in diseases characterized by deficits in cognitive control over reward and aversion.


Assuntos
Neurônios , Tegmento Mesencefálico , Ratos , Masculino , Animais , Tegmento Mesencefálico/fisiologia , Neurônios/fisiologia , Núcleo Celular , Área Tegmentar Ventral/fisiologia
2.
Neuropsychopharmacology ; 47(12): 2123-2131, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35717465

RESUMO

The lateral habenula (LHb) is an epithalamic nuclei that has been shown to signal the aversive properties of ethanol. The present study tested the hypothesis that activity of the LHb is required for the acquisition and/or expression of dependence-induced escalation of ethanol drinking and somatic withdrawal symptoms. Male Sprague-Dawley rats completed 4 weeks of baseline drinking under a standard intermittent access two-bottle choice (2BC) paradigm before undergoing 2 weeks of daily chronic intermittent ethanol (CIE) via vapor inhalation. Following this CIE exposure period, rats resumed 2BC drinking to assess dependence-induced changes in voluntary ethanol consumption. CIE exposed rats exhibited a significant increase in ethanol drinking that was associated with high levels of blood alcohol and a reduction in somatic symptoms of ethanol withdrawal. However, despite robust cFos activation in the LHb during ethanol withdrawal, chemogenetic inhibition of the LHb did not alter either ethanol consumption or somatic signs of ethanol withdrawal. Consistent with this observation, ablating LHb outputs via electrolytic lesions of the fasciculus retroflexus (FR) did not alter the acquisition of somatic withdrawal symptoms or escalation of ethanol drinking in CIE-exposed rats. The LHb controls activity of the rostromedial tegmental nucleus (RMTg), a midbrain nucleus activated by aversive experiences including ethanol withdrawal. During ethanol withdrawal, both FR lesioned and sham control rats exhibited similar cFos activation in the RMTg, suggesting that RMTg activation during ethanol withdrawal does not require LHb input. These data suggest that, at least in male rats, the LHb is not necessary for the acquisition or expression of escalation of ethanol consumption or expression of somatic symptoms of ethanol withdrawal. Overall, our findings provide evidence that the LHb is dispensable for some of the negative consequences of ethanol withdrawal.


Assuntos
Alcoolismo , Habenula , Sintomas Inexplicáveis , Síndrome de Abstinência a Substâncias , Consumo de Bebidas Alcoólicas , Alcoolismo/metabolismo , Animais , Etanol , Habenula/metabolismo , Masculino , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Síndrome de Abstinência a Substâncias/metabolismo
3.
Sci Rep ; 12(1): 6595, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35449195

RESUMO

Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) have become a premier neuroscience research tool for enabling reversible manipulations of cellular activity following experimenter-controlled delivery of a DREADD-specific ligand. However, several DREADD ligands, e.g., clozapine-N-oxide (CNO), have metabolic and off-target effects that may confound experimental findings. New DREADD ligands aim to reduce metabolic and potential off-target effects while maintaining strong efficacy for the designer receptors. Recently a novel DREADD ligand, deschloroclozapine (DCZ), was shown to induce chemogenetic-mediated cellular and behavioral effects in mice and monkeys without detectable side effects. The goal of the present study was to examine the effectiveness of systemic DCZ for DREADD-based chemogenetic manipulations in behavioral and slice electrophysiological applications in rats. We demonstrate that a relatively low dose of DCZ (0.1 mg/kg) supports excitatory DREADD-mediated cFos induction, DREADD-mediated inhibition of a central amygdala-dependent behavior, and DREADD-mediated inhibition of neuronal activity in a slice electrophysiology preparation. In addition, we show that this dose of DCZ does not alter gross locomotor activity or induce a place preference/aversion in control rats without DREADD expression. Together, our findings support the use of systemic DCZ for DREADD-based manipulaations in rats, and provide evidence that DCZ is a superior alternative to CNO.


Assuntos
Drogas Desenhadas , Animais , Comportamento Animal , Drogas Desenhadas/metabolismo , Drogas Desenhadas/farmacologia , Ligantes , Locomoção , Camundongos , Neurônios/metabolismo , Ratos
4.
Front Pharmacol ; 13: 837657, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35211024

RESUMO

The present study used auditory fear conditioning to assess the impact of repeated binge-like episodes of alcohol exposure during adolescence on conditioned fear in adulthood. Male and female Long-Evans rats were subjected to adolescent intermittent ethanol (AIE) exposure by vapor inhalation between post-natal day 28 and 44. After aging into adulthood, rats then underwent fear conditioning by exposure to a series of tone-shock pairings. This was followed by cued-tone extinction training, and then testing of fear recovery. In male rats, AIE exposure enhanced conditioned freezing but did not alter the time-course of extinction of cued-tone freezing. During subsequent assessment of fear recovery, AIE exposed rats exhibited less freezing during contextual fear renewal, but greater freezing during extinction recall and spontaneous recovery. Compared to males, female rats exhibited significantly lower levels of freezing during fear conditioning, more rapid extinction of freezing behavior, and significantly lower levels of freezing during the tests of fear recovery. Unlike males that were all classified as high conditioners; female rats could be parsed into either a high or low conditioning group. However, irrespective of their level of conditioned freezing, both the high and low conditioning groups of female rats exhibited rapid extinction of conditioned freezing behavior and comparatively low levels of freezing in tests of fear recovery. Regardless of group classification, AIE had no effect on freezing behavior in female rats during acquisition, extinction, or fear recovery. Lastly, exposure of male rats to the mGlu5 positive allosteric modulator CDPPB prevented AIE-induced alterations in freezing. Taken together, these observations demonstrate sex-specific changes in conditioned fear behaviors that are reversible by pharmacological interventions that target mGlu5 receptor activation.

5.
Addict Neurosci ; 42022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36643604

RESUMO

Binge drinking during adolescence is highly prevalent despite increasing evidence of its long-term impact on behaviors associated with modulation of behavioral flexibility by the medial prefrontal cortex (mPFC). In the present study, male and female rats underwent adolescent intermittent ethanol (AIE) exposure by vapor inhalation. After aging to adulthood, retrograde bead labelling and viral tagging were used to identify populations of neurons in the prelimbic region (PrL) of the mPFC that project to specific subcortical targets. Electrophysiological recording from bead-labelled neurons in PrL slices revealed that AIE did not alter the intrinsic excitability of PrL neurons that projected to either the NAc or the BLA. Similarly, recordings of spontaneous inhibitory and excitatory post-synaptic currents revealed no AIE-induced changes in synaptic drive onto either population of projection neurons. In contrast, AIE exposure was associated with a loss of dopamine receptor 1 (D1), but no change in dopamine receptor 2 (D2), modulation of evoked firing of both populations of projection neurons. Lastly, confocal imaging of proximal and apical dendritic tufts of viral-labelled PrL neurons that projected to the nucleus accumbens (NAc) revealed AIE did not alter the density of dendritic spines. Together, these observations provide evidence that AIE exposure results in disruption of D1 receptor modulation of PrL inputs to at least two major subcortical target regions that have been implicated in AIE-induced long-term changes in behavioral control.

6.
Int Rev Neurobiol ; 160: 305-340, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34696877

RESUMO

Alcohol drinking is often initiated during adolescence, and this frequently escalates to binge drinking. As adolescence is also a period of dynamic neurodevelopment, preclinical evidence has highlighted that some of the consequences of binge drinking can be long lasting with deficits persisting into adulthood in a variety of cognitive-behavioral tasks. However, while the majority of preclinical work to date has been performed in male rodents, the rapid increase in binge drinking in adolescent female humans has re-emphasized the importance of addressing alcohol effects in the context of sex as a biological variable. Here we review several of the consequences of adolescent ethanol exposure in light of sex as a critical biological variable. While some alcohol-induced outcomes, such as non-social approach/avoidance behavior and sleep disruption, are generally consistent across sex, others are variable across sex, such as alcohol drinking, sensitivity to ethanol, social anxiety-like behavior, and induction of proinflammatory markers.


Assuntos
Consumo de Bebidas Alcoólicas , Etanol , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/fisiopatologia , Animais , Comportamento Animal/efeitos dos fármacos , Etanol/toxicidade , Feminino , Masculino , Roedores , Fatores Sexuais
7.
Neuropharmacology ; 184: 108393, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33221480

RESUMO

Animal models of alcohol drinking and dependence are a critical resource for understanding the neurobiological mechanisms and development of more effective treatments for alcohol use disorder (AUD). Because most rat strains do not voluntarily consume large enough quantities of alcohol to adequately model heavy drinking, dependence, and withdrawal-related symptoms, researchers frequently turn to experimenter administered methods to investigate how prolonged and repeated exposure to large quantities of alcohol impacts brain and behavior. Vaporized ethanol is a common method used for chronically subjecting rodents to alcohol and has been widely used to model both binge and dependence-inducing heavy drinking patterns observed in humans. Rodent strain, sex, and age during exposure are all well-known to influence outcomes in experiments utilizing intraperitoneal or intragastric methods of repeated ethanol exposure. Yet, despite its frequent use, the impact of these variables on outcomes associated with ethanol vapor exposure has not been widely investigated. The present study analyzed data generated from over 700 rats across an eight-year period to provide a population-level assessment of variables influencing level of intoxication using vapor exposure. Our findings reveal important differences with respect to strain, sex, and age during ethanol exposure in the relationship between blood ethanol concentration and behavioral signs of intoxication. These data provide valuable scientific and practical insight for laboratories utilizing ethanol vapor exposure paradigms to model AUD in rats.


Assuntos
Intoxicação Alcoólica/sangue , Concentração Alcoólica no Sangue , Etanol/administração & dosagem , Etanol/sangue , Exposição por Inalação/efeitos adversos , Caracteres Sexuais , Fatores Etários , Intoxicação Alcoólica/genética , Intoxicação Alcoólica/psicologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Feminino , Masculino , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Fatores Sexuais , Especificidade da Espécie
8.
Alcohol ; 85: 111-118, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31923560

RESUMO

Ghrelin is an appetite-regulating peptide that is primarily secreted by endocrine cells in the stomach and is implicated in regulation of alcohol consumption and alcohol-reinforced behaviors. In the present study, adolescent Sprague-Dawley rats received intermittent ethanol (AIE) exposure by intragastric intubation (5 g/kg) or vapor inhalation, manipulations conducted between postnatal days (PD) 28-43. On the first and last day of AIE exposure, the level of intoxication was examined 1 h after ethanol gavage or upon removal from the vapor chamber. This was immediately followed by a blood draw for determination of the blood ethanol concentration (BEC) and plasma levels of acylated ghrelin (acyl-ghrelin; active). On PD29, plasma levels of acyl-ghrelin were significantly elevated in male (but not female) rats in response to acute ethanol exposure by both gastric gavage and vapor inhalation. Importantly, assessment of plasma acyl-ghrelin in response to repeated ethanol exposure revealed a complex interaction of both sex and method of AIE exposure. On PD43, vapor inhalation increased plasma acyl-ghrelin in both males and females compared to their air-control counterparts, whereas there was no change in plasma levels of acyl-ghrelin in either male or female rats in response to exposure by intragastric gavage. Assessment of plasma acyl-ghrelin following a 30-day ethanol-free period revealed AIE exposure did not produce a change in basal levels. In addition, an acute ethanol challenge in adult rats of 5 g/kg via gastric gavage had no effect on plasma ghrelin levels when assessed 1 h after initiation of exposure. Collectively, these observations suggest that acyl-ghrelin, a primary gut-brain signaling hormone, is elevated by ethanol during early adolescence independent of administration route, and in gender-dependent fashion.


Assuntos
Etanol/farmacologia , Grelina/análogos & derivados , Administração por Inalação , Animais , Etanol/administração & dosagem , Etanol/sangue , Feminino , Grelina/sangue , Intubação Gastrointestinal , Masculino , Ratos , Ratos Sprague-Dawley , Caracteres Sexuais
9.
Alcohol Clin Exp Res ; 43(9): 1806-1822, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31335972

RESUMO

The Neurobiology of Adolescent Drinking in Adulthood (NADIA) Consortium has focused on the impact of adolescent binge drinking on brain development, particularly on effects that persist into adulthood. Adolescent binge drinking is common, and while many factors contribute to human brain development and alcohol use during adolescence, animal models are critical for understanding the specific consequences of alcohol exposure during this developmental period and the underlying mechanisms. Using adolescent intermittent ethanol (AIE) exposure models, NADIA investigators identified long-lasting AIE-induced changes in adult behavior that are consistent with observations in humans, such as increased alcohol drinking, increased anxiety (particularly social anxiety), increased impulsivity, reduced behavioral flexibility, impaired memory, disrupted sleep, and altered responses to alcohol. These behavioral changes are associated with multiple molecular, cellular, and physiological alterations in the brain that persist long after AIE exposure. At the molecular level, AIE results in long-lasting changes in neuroimmune/trophic factor balance and epigenetic-microRNA (miRNA) signaling across glia and neurons. At the cellular level, AIE history is associated in adulthood with reduced expression of cholinergic, serotonergic, and dopaminergic neuron markers, attenuated cortical thickness, decreased neurogenesis, and altered dendritic spine and glial morphology. This constellation of molecular and cellular adaptations to AIE likely contributes to observed alterations in neurophysiology, measured by synaptic physiology, EEG patterns, and functional connectivity. Many of these AIE-induced brain changes replicate findings seen in postmortem brains of humans with alcohol use disorder (AUD). NADIA researchers are now elucidating mechanisms of these adaptations. Emerging data demonstrate that exercise, antiinflammatory drugs, anticholinesterases, histone deacetylase inhibitors, and other pharmacological compounds are able to prevent (administered during AIE) and/or reverse (given after AIE) AIE-induced pathology in adulthood. These studies support hypotheses that adolescent binge drinking increases risk of adult hazardous drinking and influences brain development, and may provide insight into novel therapeutic targets for AIE-induced neuropathology and AUDs.


Assuntos
Comportamento/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Etanol/efeitos adversos , Consumo de Álcool por Menores , Animais , Humanos , Neuroimunomodulação/efeitos dos fármacos
10.
Neuropsychopharmacology ; 44(11): 1896-1905, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31060041

RESUMO

Acute withdrawal from alcohol is associated with a number of unpleasant symptoms that play an important role in preventing recovery and long-term abstinence. Considerable research has focused on the role that neuropeptide systems and the amygdala play in mediating affective symptoms of acute withdrawal, but promising preclinical findings have not translated successfully into the clinic. The rostromedial tegmental nucleus (RMTg) has been implicated in both fear and anxiety. In addition, RMTg neurons exert inhibitory control over midbrain dopamine neurons, the activity of which are suppressed during acute withdrawal. Thus, we hypothesized that the RMTg may play a role in mediating symptoms of acute withdrawal. Using a chronic ethanol vapor exposure paradigm that renders rats physically dependent on ethanol, we observed significant withdrawal-induced enhancement of cFos expression in the RMTg. This was accompanied by a significant increase in somatic symptoms and a decrease in reward sensitivity as measured by intracranial self-stimulation (ICSS). Both measures followed a similar time course to RMTg cFos expression with peak symptom severity occurring 12 h following cessation of ethanol exposure. Heightened anxiety-like behavior was also observed in withdrawn rats at this same time point. RMTg inhibition had no effect on somatic signs of withdrawal or withdrawal-induced changes in reward sensitivity, but significantly attenuated withdrawal-induced anxiety-like behavior. Together, these data demonstrate that the RMTg plays a distinct role in the negative affective state associated with acute withdrawal and may therefore be critically involved in the neurobiological mechanisms that promote relapse during early stages of recovery.


Assuntos
Ansiedade/induzido quimicamente , Comportamento Animal/efeitos dos fármacos , Etanol/efeitos adversos , Síndrome de Abstinência a Substâncias/metabolismo , Área Tegmentar Ventral/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Etanol/administração & dosagem , Agonistas de Receptores de GABA-A/farmacologia , Masculino , Muscimol/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Long-Evans , Autoestimulação , Área Tegmentar Ventral/metabolismo
11.
Alcohol ; 79: 93-103, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30664983

RESUMO

The abuse of alcohol during adolescence is widespread and represents a particular concern, given that earlier age of drinking onset is associated with increased risk for the development of alcohol use disorders (AUDs). Despite this risk, it remains unclear whether binge-like adolescent alcohol exposure facilitates drinking despite aversive consequences, a characteristic common among individuals with AUDs. The present study examined voluntary alcohol consumption and aversion-resistant drinking in adult male Long-Evans rats that had undergone adolescent intermittent ethanol (AIE) exposure by vapor inhalation between postnatal days (PD) 28-44. Ethanol consumption during adulthood was examined using a two-bottle choice (2BC) intermittent access procedure. Rats were tested for aversion-resistant drinking using ethanol adulterated with quinine (10, 30, 100 mg/L) after two 7-week periods of 2BC drinking. After completion of the second test of aversion-resistant drinking, rats were trained to operantly self-administer ethanol. The results revealed that both air control (AIR) and AIE-exposed rats exhibited similar ethanol intake and preference in the 2BC paradigm. After 7 weeks of 2BC drinking, quinine adulteration significantly suppressed ethanol intake, but only at the highest concentration examined (100 mg/L). However, upon retesting after a total of 17 weeks of 2BC drinking, 30-mg/L quinine suppressed ethanol intake. Notably, AIR- and AIE-exposed rats were equally sensitive to quinine-adulterated ethanol at both time points. In addition, AIR- and AIE-exposed rats responded similarly during operant ethanol self-administration on both fixed and progressive ratio schedules of reinforcement. Finally, both AIR- and AIE-exposed rats exhibited similar preference for sucrose. The results of this study show that binge-like ethanol vapor exposure during adolescence does not alter voluntary ethanol consumption, motivation to operantly respond for ethanol, or promote aversion-resistant ethanol consumption in adulthood. These data, together with previous work reporting conflicting results across various rodent models of adolescent alcohol exposure, underscore the need to further explore the role that exposure to alcohol during adolescence has on the development of heavy and compulsive drinking phenotypes in adulthood.


Assuntos
Consumo de Bebidas Alcoólicas , Comportamento de Escolha , Comportamento Compulsivo/genética , Comportamento de Ingestão de Líquido , Etanol/administração & dosagem , Quinina/administração & dosagem , Administração por Inalação , Fatores Etários , Animais , Condicionamento Operante , Masculino , Motivação , Fenótipo , Ratos , Ratos Long-Evans , Autoadministração , Sacarose/administração & dosagem
12.
Learn Mem ; 26(1): 1-8, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30559114

RESUMO

The loss of behavioral flexibility is common across a number of neuropsychiatric illnesses. This may be in part due to the loss of the ability to detect or use changes in action-outcome contingencies to guide behavior. There is growing evidence that the ventral hippocampus plays a critical role in the regulation of flexible behavior and reward-related decision making. Here, we investigated the role of glutamatergic projections from the ventral hippocampus in the expression of contingency-mediated reward seeking. We demonstrate that selectively silencing ventral hippocampus projections can restore the use of action-outcome contingencies to guide behavior, while sparing cue-guided behavior and extinction learning. Our findings further indicated that the ability of the ventral hippocampus to promote habitual response strategies may be in part mediated by selective projections from the ventral hippocampus to the nucleus accumbens shell. Together these results implicate glutamatergic projections from the ventral hippocampus in the regulation of behavioral flexibility and suggest that alterations in ventral hippocampus function may contribute to overreliance on habitual response strategy observed in neuropsychiatric illnesses including addiction and obsessive-compulsive disorder.


Assuntos
Condicionamento Operante/fisiologia , Hipocampo/fisiologia , Animais , Condicionamento Clássico/fisiologia , Extinção Psicológica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/fisiologia
13.
Addict Biol ; 22(3): 616-628, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-26804056

RESUMO

Delayed maturation of the adolescent prefrontal cortex may render it particularly vulnerable to insults, including those associated with drugs of abuse. Using a rat model of binge alcohol exposure, the present study examined the effect of adolescent intermittent ethanol (AIE) exposure during postnatal days 28-42 on γ-aminobutyric acid (GABA)ergic neurotransmission in the prelimbic cortex. In control rats, patch-clamp electrophysiology in acute slices obtained at different postnatal ages revealed a developmental increase in the GABAA receptor-mediated tonic current in layer V pyramidal neurons but no change in layers II/III when measured in the adult. In slices from AIE-exposed rats, the amplitude of the tonic current was significantly reduced compared with controls when tested at postnatal days 45, 60 and 90-120. This AIE-induced reduction in tonic current was found to reflect attenuation of currents mediated by δ-subunit containing receptors. Consistent with this, facilitation of the tonic current by bath application of either ethanol or allopregnanolone was attenuated in slices from AIE-exposed adult rats compared with control rats. However, expression of this facilitation as a percent of the amplitude of the total current mediated by δ-GABAA receptors revealed that AIE did not alter their sensitivity to either agonist. Lastly, immunohistochemistry and Western blot analysis revealed no change in the expression of δ-GABAA subunits or their surface expression. Taken together, these studies reveal that AIE exposure results in persistent deficits in δ-GABAA tonic currents in the adult prelimbic cortex that may contribute to deficits in decision-making and behavioral control in adulthood.


Assuntos
Etanol/toxicidade , Lobo Frontal/efeitos dos fármacos , Receptores de GABA-A/efeitos dos fármacos , Animais , Western Blotting , Depressores do Sistema Nervoso Central/toxicidade , Modelos Animais de Doenças , Masculino , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Ratos , Ratos Long-Evans , Transmissão Sináptica/efeitos dos fármacos , Ácido gama-Aminobutírico/efeitos dos fármacos
14.
Alcohol ; 58: 33-45, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27432260

RESUMO

Alcohol (ethanol) dependence is a chronic relapsing brain disorder partially influenced by genetics and characterized by an inability to regulate harmful levels of drinking. Emerging evidence has linked genes that encode KV7, KIR, and KCa2 K+ channels with variation in alcohol-related behaviors in rodents and humans. This led us to experimentally test relations between K+ channel genes and escalation of drinking in a chronic-intermittent ethanol (CIE) exposure model of dependence in BXD recombinant inbred strains of mice. Transcript levels for K+ channel genes in the prefrontal cortex (PFC) and nucleus accumbens (NAc) covary with voluntary ethanol drinking in a non-dependent cohort. Transcripts that encode KV7 channels covary negatively with drinking in non-dependent BXD strains. Using a pharmacological approach to validate the genetic findings, C57BL/6J mice were allowed intermittent access to ethanol to establish baseline consumption before they were treated with retigabine, an FDA-approved KV7 channel positive modulator. Systemic administration significantly reduced drinking, and consistent with previous evidence, retigabine was more effective at reducing voluntary consumption in high-drinking than low-drinking subjects. We evaluated the specific K+ channel genes that were most sensitive to CIE exposure and identified a gene subset in the NAc and PFC that were dysregulated in the alcohol-dependent BXD cohort. CIE-induced modulation of nine genes in the NAc and six genes in the PFC covaried well with the changes in drinking induced by ethanol dependence. Here we identified novel candidate genes in the NAc and PFC that are regulated by ethanol dependence and correlate with voluntary drinking in non-dependent and dependent BXD mice. The findings that Kcnq expression correlates with drinking and that retigabine reduces consumption suggest that KV7 channels could be pharmacogenetic targets to treat individuals with alcohol addiction.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Consumo de Bebidas Alcoólicas/prevenção & controle , Farmacogenética/métodos , Canais de Potássio/genética , Consumo de Bebidas Alcoólicas/metabolismo , Animais , Carbamatos/uso terapêutico , Feminino , Regulação da Expressão Gênica , Masculino , Moduladores de Transporte de Membrana/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Fenilenodiaminas/uso terapêutico , Canais de Potássio/biossíntese
15.
eNeuro ; 4(6)2017.
Artigo em Inglês | MEDLINE | ID: mdl-29302616

RESUMO

The ability to flexibly switch between goal-directed actions and habits is critical for adaptive behavior. The infralimbic prefrontal cortex (IfL-C) has been consistently identified as a crucial structure for the regulation of response strategies. To investigate the role of the IfL-C, the present study employed two validated reinforcement schedules that either promote habits or goal-directed actions in mice. The results reveal that information about action-outcome relationships is differentially encoded in the IfL-C during actions and habits as evidenced by encoding of behavioral outcomes during goal-directed actions that is lost during habits. Optogenetic inhibition of the IfL-C selectively at press during habitual behavior (when firing rates are reduced during unreinforced goal-directed actions) resulted in restoration of sensitivity to change of action-outcome contingency. These results reveal a novel functional mechanism by which IfL-C promotes habitual behavior, and provide insight into strategies for the treatment and prevention of pathological, inflexible behavior common in neuropsychiatric illness.


Assuntos
Córtex Cerebral/fisiologia , Hábitos , Neurônios/fisiologia , Potenciais de Ação , Animais , Comportamento Apetitivo/fisiologia , Condicionamento Operante/fisiologia , Eletrodos Implantados , Objetivos , Masculino , Camundongos Endogâmicos C57BL , Optogenética , Esquema de Reforço , Recompensa
16.
Neuropsychopharmacology ; 42(5): 1024-1036, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27620551

RESUMO

Repeated binge-like exposure to alcohol during adolescence has been reported to perturb prefrontal cortical development, yet the mechanisms underlying these effects are unknown. Here we report that adolescent intermittent ethanol exposure induces cellular and dopaminergic abnormalities in the adult prelimbic cortex (PrL-C). Exposing rats to alcohol during early-mid adolescence (PD28-42) increased the density of long/thin dendritic spines of layer 5 pyramidal neurons in the adult PrL-C. Interestingly, although AIE exposure did not alter the expression of glutamatergic proteins in the adult PrL-C, there was a pronounced reduction in dopamine (DA) D1 receptor modulation of both intrinsic firing and evoked NMDA currents in pyramidal cells, whereas D2 receptor function was unaltered. Recordings from fast-spiking interneurons also revealed that AIE reduced intrinsic excitability, glutamatergic signaling, and D1 receptor modulation of these cells. Analysis of PrL-C tissue of AIE-exposed rats further revealed persistent changes in the expression of DA-related proteins, including reductions in the expression of tyrosine hydroxylase and catechol-O-methyltransferase (COMT). AIE exposure was associated with hypermethylation of the COMT promoter at a conserved CpG site in exon II. Taken together, these findings demonstrate that AIE exposure disrupts DA and GABAergic transmission in the adult medial prefrontal cortex (mPFC). As DA and GABA work in concert to shape and synchronize neuronal ensembles in the PFC, these alterations could contribute to deficits in behavioral control and decision-making in adults who abused alcohol during adolescence.


Assuntos
Espinhas Dendríticas/efeitos dos fármacos , Dopamina/fisiologia , Etanol/administração & dosagem , Córtex Pré-Frontal/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Catecol O-Metiltransferase/metabolismo , Espinhas Dendríticas/patologia , Dopamina/metabolismo , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Interneurônios/efeitos dos fármacos , Interneurônios/fisiologia , Masculino , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Células Piramidais/metabolismo , Células Piramidais/patologia , Ratos Long-Evans , Receptores de AMPA/fisiologia , Receptores Dopaminérgicos/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Tirosina 3-Mono-Oxigenase/metabolismo
17.
Alcohol Clin Exp Res ; 40(8): 1651-61, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27388762

RESUMO

BACKGROUND: While the rewarding effects of alcohol contribute significantly to its addictive potential, it is becoming increasingly appreciated that alcohol's aversive properties also play an important role in the propensity to drink. Despite this, the neurobiological mechanism for alcohol's aversive actions is not well understood. The rostromedial tegmental nucleus (RMTg) was recently characterized for its involvement in aversive signaling and has been shown to encode the aversive properties of cocaine, yet its involvement in alcohol's aversive actions have not been elucidated. METHODS: Adult male and female Long-Evans rats underwent conditioned taste aversion (CTA) procedures where exposure to a novel saccharin solution was paired with intraperitoneal administration of saline, lithium chloride (LiCl), or ethanol (EtOH). Control rats underwent the same paradigm except that drug and saccharin exposure were explicitly unpaired. Saccharin consumption was measured on test day in the absence of drug administration, and rats were sacrificed 90 to 105 minutes following access to saccharin. Brains were subsequently harvested and processed for cFos immunohistochemistry. The number of cFos-labeled neurons was counted in the RMTg and the lateral habenula (LHb)-a region that sends prominent glutamatergic input to the RMTg. RESULTS: In rats that received paired drug and saccharin exposure, EtOH and LiCl induced significant CTA compared to saline to a similar degree in males and females. Both EtOH- and LiCl-induced CTA significantly enhanced cFos expression in the RMTg and LHb but not the hippocampus. Similar to behavioral measures, no significant effect of sex on CTA-induced cFos expression was observed. cFos expression in both the RMTg and LHb was significantly correlated with CTA magnitude with greater cFos being associated with more pronounced CTA. In addition, cFos expression in the RMTg was positively correlated with LHb cFos. CONCLUSIONS: These data suggest that the RMTg and LHb are involved in the expression of CTA and are consistent with previous work implicating the RMTg in aversive signaling. Furthermore, increased cFos expression in the RMTg following EtOH-induced CTA suggests that this region plays a role in signaling alcohol's aversive properties.


Assuntos
Aprendizagem da Esquiva/fisiologia , Condicionamento Psicológico/fisiologia , Etanol/administração & dosagem , Paladar/fisiologia , Tegmento Mesencefálico/fisiologia , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Condicionamento Psicológico/efeitos dos fármacos , Feminino , Habenula/efeitos dos fármacos , Habenula/fisiologia , Cloreto de Lítio/administração & dosagem , Masculino , Ratos , Ratos Long-Evans , Sacarina/administração & dosagem , Paladar/efeitos dos fármacos , Tegmento Mesencefálico/efeitos dos fármacos
18.
Alcohol Clin Exp Res ; 40(6): 1251-61, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27147118

RESUMO

BACKGROUND: Exposure to chronic ethanol (EtOH) results in changes in the expression of proteins that regulate neuronal excitability. This study examined whether chronic EtOH alters the hippocampal expression and function of fragile X mental retardation protein (FMRP) and the role of FMRP in the modulation of chronic EtOH-induced changes in the expression of NMDA receptors and Kv4.2 channels. METHODS: For in vivo studies, C57BL/6J mice underwent a chronic intermittent EtOH (CIE) vapor exposure procedure. After CIE, hippocampal tissue was collected and subjected to immunoblot blot analysis of NMDA receptor subunits (GluN1, GluN2B), Kv4.2, and its accessory protein KChIP3. For in vitro studies, hippocampal slice cultures were exposed to 75 mM EtOH for 8 days. Following EtOH exposure, mRNAs bound to FMRP was measured. In a separate set of studies, cultures were exposed to an inhibitor of S6K1 (PF-4708671 [PF], 6 µM) in order to assess whether EtOH-induced homeostatic changes in protein expression depend upon changes in FMRP activity. RESULTS: Immunoblot blot analysis revealed increases in GluN1 and GluN2B but reductions in Kv4.2 and KChIP3. Analysis of mRNAs bound to FMRP revealed a similar bidirectional change observed as reduction of GluN2B and increase in Kv4.2 and KChIP3 mRNA transcripts. Analysis of FMRP further revealed that while chronic EtOH did not alter the expression of FMRP, it significantly increased phosphorylation of FMRP at the S499 residue that is known to critically regulate its activity. Inhibition of S6K1 prevented the chronic EtOH-induced increase in phospho-FMRP and changes in NMDA subunits, Kv4.2, and KChIP3. In contrast, PF had no effect in the absence of alcohol, indicating it was specific for the chronic EtOH-induced changes. CONCLUSIONS: These findings demonstrate that chronic EtOH exposure enhances translational control of plasticity-related proteins by FMRP, and that S6K1 and FMRP activities are required for expression of chronic EtOH-induced homeostatic plasticity at glutamatergic synapses in the hippocampus.


Assuntos
Etanol/farmacologia , Proteína do X Frágil da Deficiência Intelectual/fisiologia , Hipocampo/metabolismo , Proteínas Interatuantes com Canais de Kv/biossíntese , Receptores de N-Metil-D-Aspartato/biossíntese , Canais de Potássio Shal/biossíntese , Administração por Inalação , Animais , Etanol/administração & dosagem , Etanol/antagonistas & inibidores , Proteína do X Frágil da Deficiência Intelectual/efeitos dos fármacos , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Imidazóis/farmacologia , Masculino , Camundongos , Fosforilação/efeitos dos fármacos , Piperazinas/farmacologia , Ratos , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores
19.
Trends Neurosci ; 39(7): 472-485, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27173064

RESUMO

Despite the enormous societal burden of alcohol and drug addiction and abundant research describing drug-induced maladaptive synaptic plasticity, there are few effective strategies for treating substance use disorders. Recent awareness that synaptic plasticity involves astroglia and the extracellular matrix is revealing new possibilities for understanding and treating addiction. We first review constitutive corticostriatal adaptations that are elicited by and shared between all abused drugs from the perspective of tetrapartite synapses, and integrate recent discoveries regarding cell type-specificity in striatal neurons. Next, we describe recent discoveries that drug-seeking is associated with transient synaptic plasticity that requires all four synaptic elements and is shared across drug classes. Finally, we prognosticate how considering tetrapartite synapses can provide new treatment strategies for addiction.


Assuntos
Plasticidade Neuronal/fisiologia , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia , Sinapses/fisiologia , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiopatologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/fisiopatologia , Humanos , Recidiva , Transtornos Relacionados ao Uso de Substâncias/terapia
20.
Psychopharmacology (Berl) ; 233(2): 235-42, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26449720

RESUMO

RATIONALE: Alcohol use disorders are associated with deficits in adaptive behavior. While some behavioral impairments that are associated with alcohol use disorders may predate exposure to drugs of abuse, others may result directly from exposure to drugs of abuse, including alcohol. Identifying a causal role for how alcohol exposure leads to these impairments will enable further investigation of the neurobiological mechanisms by which it acts to dysregulate adaptive behavior. OBJECTIVES: In the present study, we examined the effects of chronic intermittent ethanol exposure (CIE) on the use of reward-paired cues to guide consummatory behaviors in a mouse model, and further, how manipulations of mGluR2/3 signaling-known to be dysregulated after chronic alcohol exposure-may alter the expression of this behavior. METHODS: Adult male C57B/6J mice were trained to self-administer 10 % ethanol and exposed to CIE via vapor inhalation. After CIE exposure, mice were trained in a Pavlovian task wherein a cue (tone) was paired with the delivery of a 10 % sucrose unconditioned stimulus. The use of the reward-paired cue to guide licking behavior was determined across training. The effect of systemic mGluR2/3 manipulation on discrimination between cue-on and cue-off intervals was assessed by administration of the mGluR2/3 agonist LY379268 or the antagonist LY341495 prior to a testing session. RESULTS: Exposure to CIE resulted in reductions in discrimination between cue-on and cue-off intervals, with CIE-exposed mice exhibiting significantly lower consummatory behavior during reward-paired cues than air controls. In addition, systemic administration of an mGluR2/3 agonist restored the use of reward-paired cues in CIE-exposed animals without impacting behavior in air controls. Conversely, administration of an mGluR2/3 antagonist mimicked the effects of CIE on cue-guided licking behavior, indicating that mGluR2/3 signaling can bidirectionally regulate the ability to use reward-paired cues to guide behavior. CONCLUSIONS: Together, these data suggest that chronic ethanol exposure drives impairments in the ability to use reward-paired cues to adaptively regulate behavior and that mGluR2/3 receptors represent a therapeutic target for restoration of these deficits in behavioral control in the alcoholic.


Assuntos
Alcoolismo/psicologia , Sinais (Psicologia) , Receptores de AMPA/agonistas , Transdução de Sinais/efeitos dos fármacos , Adaptação Psicológica/efeitos dos fármacos , Aminoácidos/farmacologia , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Condicionamento Operante/efeitos dos fármacos , Comportamento Consumatório/efeitos dos fármacos , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Desempenho Psicomotor/efeitos dos fármacos , Receptores de AMPA/antagonistas & inibidores , Receptores de AMPA/biossíntese , Recompensa , Autoadministração , Xantenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...