Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 71(22): 7171-7178, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-32949136

RESUMO

The induced dwarf mutant Rht12 was previously shown to have agronomic potential to replace the conventional DELLA mutants Rht-B1b/Rht-D1b in wheat. The Rht12 dwarfing gene is not associated with reduced coleoptile length (unlike the DELLA mutants) and it is dominant, characteristics which are shared with the previously characterized dwarfing genes Rht18 and Rht14. Using the Rht18/Rht14 model, a gibberellin (GA) 2-oxidase gene was identified in the Rht12 region on chromosome 5A. A screen for suppressor mutants in the Rht12 background identified tall overgrowth individuals that were shown to contain loss-of-function mutations in GA2oxidaseA13, demonstrating the role of this gene in the Rht12 dwarf phenotype. It was concluded that Rht12, Rht18, and Rht14 share the same height-reducing mechanism through the increased expression of GA 2-oxidase genes. Some of the overgrowth mutants generated in this study were semi-dwarf and taller than the original Rht12 dwarf, providing breeders with new sources of agronomically useful dwarfism.


Assuntos
Nanismo , Giberelinas , Fenótipo , Proteínas de Plantas/genética , Triticum/genética
2.
Front Plant Sci ; 11: 190, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32265944

RESUMO

Wild radish is a major weed of Australian cereal crops. A rapid establishment, fast growth, and abundant seed production are fundamental to its success as an invasive species. Wild radish has developed resistance to a number of commonly used herbicides increasing the problem. New innovative approaches are needed to control wild radish populations. Here we explore the possibility of pursuing gibberellin (GA) biosynthesis as a novel molecular target for controlling wild radish, and in doing so contribute new insights into GA biology. By characterizing ga 3-oxidase (ga3ox) mutants in Arabidopsis, a close taxonomic relative to wild radish, we showed that even mild GA deficiencies cause considerable reductions in growth and fecundity. This includes an explicit requirement for GA biosynthesis in successful female fertility. Similar defects were reproducible in wild radish via chemical inhibition of GA biosynthesis, confirming GA action as a possible new target for controlling wild radish populations. Two possible targeting approaches are considered; the first would involve developing a species-specific inhibitor that selectively inhibits GA production in wild radish over cereal crops. The second, involves making crop species insensitive to GA repression, allowing the use of existing broad spectrum GA inhibitors to control wild radish populations. Toward the first concept, we cloned and characterized two wild radish GA3OX genes, identifying protein differences that appear sufficient for selective inhibition of dicot over monocot GA3OX activity. We developed a novel yeast-based approach to assay GA3OX activity as part of the molecular characterization, which could be useful for future screening of inhibitory compounds. For the second approach, we demonstrated that a subset of GA associated sln1/Rht-1 overgrowth mutants, recently generated in cereals, are insensitive to GA reductions brought on by the general GA biosynthesis inhibitor, paclobutrazol. The location of these mutations within sln1/Rht-1, offers additional insight into the functional domains of these important GA signaling proteins. Our early assessment suggests that targeting the GA pathway could be a viable inclusion into wild radish management programs that warrants further investigation. In drawing this conclusion, we provided new insights into GA regulated reproductive development and molecular characteristics of GA metabolic and signaling proteins.

3.
Plant Physiol ; 177(1): 168-180, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29545269

RESUMO

Semidwarfing genes have improved crop yield by reducing height, improving lodging resistance, and allowing plants to allocate more assimilates to grain growth. In wheat (Triticum aestivum), the Rht18 semidwarfing gene was identified and deployed in durum wheat before it was transferred into bread wheat, where it was shown to have agronomic potential. Rht18, a dominant and gibberellin (GA) responsive mutant, is genetically and functionally distinct from the widely used GA-insensitive semidwarfing genes Rht-B1b and Rht-D1b In this study, the Rht18 gene was identified by mutagenizing the semidwarf durum cultivar Icaro (Rht18) and generating mutants with a range of tall phenotypes. Isolating and sequencing chromosome 6A of these "overgrowth" mutants showed that they contained independent mutations in the coding region of GA2oxA9GA2oxA9 is predicted to encode a GA 2-oxidase that metabolizes GA biosynthetic intermediates into inactive products, effectively reducing the amount of bioactive GA (GA1). Functional analysis of the GA2oxA9 protein demonstrated that GA2oxA9 converts the intermediate GA12 to the inactive metabolite GA110 Furthermore, Rht18 showed higher expression of GA2oxA9 and lower GA content compared with its tall parent. These data indicate that the increased expression of GA2oxA9 in Rht18 results in a reduction of both bioactive GA content and plant height. This study describes a height-reducing mechanism that can generate new genetic diversity for semidwarfism in wheat by combining increased expression with mutations of specific amino acid residues in GA2oxA9.


Assuntos
Giberelinas/metabolismo , Proteínas de Plantas/genética , Triticum/crescimento & desenvolvimento , Triticum/genética , Centrômero/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Regulação da Expressão Gênica de Plantas , Giberelinas/genética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Mutagênese , Proteínas de Plantas/metabolismo , Poliploidia , Regiões Promotoras Genéticas , Triticum/metabolismo
4.
Funct Plant Biol ; 44(5): 525-537, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-32480585

RESUMO

A suppressor screen using the dwarf Rht-B1c Della mutant of wheat (Triticum aestivum L.) led to the isolation of overgrowth mutants, which retained the original dwarfing gene but grew at a faster rate because of a new mutation elsewhere in that gene. Forty-six alleles were identified, which included amino acid substitutions, premature stop codons, and splice site alterations. The sites of amino acid substitution were primarily localised around conserved motifs in the DELLA protein, and these mutants showed a wide range in their extent of growth recovery (dwarf, semidwarf, tall). Detailed growth comparisons were made on a wide height range of backcrossed overgrowth alleles, comparing stem and spike growth, leaf size, tillering, phenological development, coleoptile length, grain dormancy and grain yield. There were large and reproducible differences between alleles for some traits, whereas others were largely unaffected or varied with growth conditions. Some of the overgrowth alleles offer promise as alternatives to the Rht-B1b and Rht-D1b dwarfing genes, allowing a wider range of height control, improved grain dormancy and equivalent grain yield. The collection of mutants will also be valuable as a resource to study the effect of height on different physiological or agronomic traits, and in elucidating DELLA protein function.

5.
Theor Appl Genet ; 129(11): 2151-2160, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27539013

RESUMO

KEY MESSAGE: Many deletions of the wheat Della ( Rht - B1 ) gene and its flanking regions were isolated in a simple phenotypic screen, and characterised by modified analysis of SNP hybridisation data and cytogenetics. In a dwarf wheat suppressor screen, many tall 'revertants' were isolated following mutagenesis of a severely dwarfed (Rht-B1c) hexaploid wheat. About 150 lines were identified as putative deletions of Rht-B1c, based on the PCR analysis. Southern blot hybridisation established that most of them lacked the Rht-B1 gene, but retained the homoeologues Rht-A1 and Rht-D1. PCR assays were developed for orthologues of two genes that flank Rht-1/Della in the genomes of the model species Brachypodium and rice. Deletion of the B-genome-specific homoeologues of these two genes was confirmed in the Rht-B1 deletion lines, indicating loss of more than a single gene. SNP chip hybridisation analysis established the extents of deletion in these lines. Based on the synteny with Brachypodium chromosomes 1 and 4 g, and rice chromosomes 3g and 11g, notional deletion maps were established. The deletions ranged from interstitial deletions of 4BS through to loss of all 4BS markers. There were also instances, where all 4BS and 4BL markers were lost, and these lines had poor fertility and narrow stems and leaves. Cytogenetic studies on selected lines confirmed the loss of portions of 4BS in lines that lacked most or all 4BS markers. They also confirmed that lines lacking both 4BS and 4BL markers were nullisomics for 4B. These nested deletion lines share a common genetic background and will have applications in assigning markers to regions of 4BS as well as to 4BL. The potential for this type of analysis in other regions of the wheat genome is discussed.


Assuntos
Mapeamento Cromossômico , Deleção de Genes , Polimorfismo de Nucleotídeo Único , Triticum/genética , Cromossomos de Plantas/genética , Análise Citogenética , DNA de Plantas/genética , Fenótipo
6.
Plant Cell ; 26(4): 1557-1569, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24781117

RESUMO

EARLY FLOWERING3 (ELF3) is a circadian clock gene that contributes to photoperiod-dependent flowering in plants, with loss-of-function mutants in barley (Hordeum vulgare), legumes, and Arabidopsis thaliana flowering early under noninductive short-day (SD) photoperiods. The barley elf3 mutant displays increased expression of FLOWERING LOCUS T1 (FT1); however, it remains unclear whether this is the only factor responsible for the early flowering phenotype. We show that the early flowering and vegetative growth phenotypes of the barley elf3 mutant are strongly dependent on gibberellin (GA) biosynthesis. Expression of the central GA biosynthesis gene, GA20oxidase2, and production of the bioactive GA, GA1, were significantly increased in elf3 leaves under SDs, relative to the wild type. Inhibition of GA biosynthesis suppressed the early flowering of elf3 under SDs independently of FT1 and was associated with altered expression of floral identity genes at the developing apex. GA is also required for normal flowering of spring barley under inductive photoperiods, with chemical and genetic attenuation of the GA biosynthesis and signaling pathways suppressing inflorescence development under long-day conditions. These findings illustrate that GA is an important floral promoting signal in barley and that ELF3 suppresses flowering under noninductive photoperiods by blocking GA production and FT1 expression.

7.
Phytochemistry ; 84: 47-55, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23009879

RESUMO

Wheat (Triticum aestivum) and rice (Oryza sativa) are two of the most agriculturally important cereal crop plants. Rice is known to produce numerous diterpenoid natural products that serve as phytoalexins and/or allelochemicals. Specifically, these are labdane-related diterpenoids, derived from a characteristic labdadienyl/copalyl diphosphate (CPP), whose biosynthetic relationship to gibberellin biosynthesis is evident from the relevant expanded and functionally diverse family of ent-kaurene synthase-like (KSL) genes found in rice the (OsKSLs). Herein reported is the biochemical characterization of a similarly expansive family of KSL from wheat (the TaKSLs). In particular, beyond ent-kaurene synthases (KS), wheat also contains several biochemically diversified KSLs. These react either with the ent-CPP intermediate common to gibberellin biosynthesis or with the normal stereoisomer of CPP that also is found in wheat (as demonstrated by the accompanying paper describing the wheat CPP synthases). Comparison with a barley (Hordeum vulgare) KS indicates conservation of monocot KS, with early and continued expansion and functional diversification of KSLs in at least the small grain cereals. In addition, some of the TaKSLs that utilize normal CPP also will react with syn-CPP, echoing previous findings with the OsKSL family, with such enzymatic promiscuity/elasticity providing insight into the continuing evolution of diterpenoid metabolism in the cereal crop plant family, as well as more generally, which is discussed here.


Assuntos
Alquil e Aril Transferases/metabolismo , Diterpenos/metabolismo , Grão Comestível/química , Triticum/enzimologia , Alquil e Aril Transferases/genética , Sequência de Aminoácidos , Biocatálise , Diterpenos/química , Grão Comestível/enzimologia , Grão Comestível/metabolismo , Conformação Molecular , Filogenia , Alinhamento de Sequência
8.
Phytochemistry ; 84: 40-6, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23009878

RESUMO

Two of the most agriculturally important cereal crop plants are wheat (Triticum aestivum) and rice (Oryza sativa). Rice has been shown to produce a number of diterpenoid natural products as phytoalexins and/or allelochemicals--specifically, labdane-related diterpenoids, whose biosynthesis proceeds via formation of an eponymous labdadienyl/copalyl diphosphate (CPP) intermediate (e.g., the ent-CPP of gibberellin phytohormone biosynthesis). Similar to rice, wheat encodes a number of CPP synthases (CPS), and the three CPS characterized to date (TaCPS1-3) all have been suggested to produce ent-CPP. However, several of the downstream diterpene synthases will only react with CPP intermediate of normal or syn, but not ent, stereochemistry, as described in the accompanying report. Investigation of additional CPS did not resolve this issue, as the only other functional synthase (TaCPS4) also produced ent-CPP. Chiral product characterization of all the TaCPS then established that TaCPS2 uniquely produces normal, rather than ent-, CPP, thus, providing a suitable substrate source for the downstream diterpene synthases. Notably, TaCPS2 is most homologous to the similarly stereochemically differentiated syn-CPP synthase from rice (OsCPS4), while the non-inducible TaCPS3 and TaCPS4 cluster with the rice OsCPS1 required for gibberellin phytohormone biosynthesis, as well as with a barley (Hordeum vulgare) CPS (HvCPS1) that also is characterized here as similarly producing ent-CPP. These results suggest that diversification of labdane-related diterpenoid metabolism beyond the ancestral gibberellins occurred early in cereal evolution, and included the type of stereochemical variation demonstrated here.


Assuntos
Alquil e Aril Transferases/metabolismo , Diterpenos/metabolismo , Grão Comestível/metabolismo , Proteínas de Plantas/metabolismo , Triticum/enzimologia , Algoritmos , Alquil e Aril Transferases/genética , Sequência de Aminoácidos , Biologia Computacional , Diterpenos/química , Filogenia , Proteínas de Plantas/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência
9.
Plant Physiol ; 160(1): 308-18, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22791303

RESUMO

Tillering (branching) is a major yield component and, therefore, a target for improving the yield of crops. However, tillering is regulated by complex interactions of endogenous and environmental signals, and the knowledge required to achieve optimal tiller number through genetic and agronomic means is still lacking. Regulatory mechanisms may be revealed through physiological and molecular characterization of naturally occurring and induced tillering mutants in the major crops. Here we characterize a reduced tillering (tin, for tiller inhibition) mutant of wheat (Triticum aestivum). The reduced tillering in tin is due to early cessation of tiller bud outgrowth during the transition of the shoot apex from the vegetative to the reproductive stage. There was no observed difference in the development of the main stem shoot apex between tin and the wild type. However, tin initiated internode development earlier and, unlike the wild type, the basal internodes in tin were solid rather than hollow. We hypothesize that tin represents a novel type of reduced tillering mutant associated with precocious internode elongation that diverts sucrose (Suc) away from developing tillers. Consistent with this hypothesis, we have observed upregulation of a gene induced by Suc starvation, downregulation of a Suc-inducible gene, and a reduced Suc content in dormant tin buds. The increased expression of the wheat Dormancy-associated (DRM1-like) and Teosinte Branched1 (TB1-like) genes and the reduced expression of cell cycle genes also indicate bud dormancy in tin. These results highlight the significance of Suc in shoot branching and the possibility of optimizing tillering by manipulating the timing of internode elongation.


Assuntos
Regulação da Expressão Gênica de Plantas , Genes de Plantas , Caules de Planta/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Etiquetas de Sequências Expressas , Cromatografia Gasosa-Espectrometria de Massas , Genes cdc , Mutação , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Caules de Planta/genética , Caules de Planta/metabolismo , Reação em Cadeia da Polimerase/métodos , Sacarose/metabolismo , Triticum/genética , Triticum/metabolismo
10.
Plant Physiol ; 157(4): 1820-31, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22013218

RESUMO

The introduction of the Reduced height (Rht)-B1b and Rht-D1b semidwarfing genes led to impressive increases in wheat (Triticum aestivum) yields during the Green Revolution. The reduction in stem elongation in varieties containing these alleles is caused by a limited response to the phytohormone gibberellin (GA), resulting in improved resistance to stem lodging and yield benefits through an increase in grain number. Rht-B1 and Rht-D1 encode DELLA proteins, which act to repress GA-responsive growth, and their mutant alleles Rht-B1b and Rht-D1b are thought to confer dwarfism by producing more active forms of these growth repressors. While no semidwarfing alleles of Rht-A1 have been identified, we show that this gene is expressed at comparable levels to the other homeologs and represents a potential target for producing novel dwarfing alleles. In this study, we have characterized additional dwarfing mutations in Rht-B1 and Rht-D1. We show that the severe dwarfism conferred by Rht-B1c is caused by an intragenic insertion, which results in an in-frame 90-bp insertion in the transcript and a predicted 30-amino acid insertion within the highly conserved amino-terminal DELLA domain. In contrast, the extreme dwarfism of Rht-D1c is due to overexpression of the semidwarfing Rht-D1b allele, caused by an increase in gene copy number. We show also that the semidwarfing alleles Rht-B1d and Rht-B1e introduce premature stop codons within the amino-terminal coding region. Yeast two-hybrid assays indicate that these newly characterized mutations in Rht-B1 and Rht-D1 confer "GA-insensitive" dwarfism by producing DELLA proteins that do not bind the GA receptor GA INSENSITIVE DWARF1, potentially compromising their targeted degradation.


Assuntos
Giberelinas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Triticum/crescimento & desenvolvimento , Triticum/genética , Alelos , Sequência de Aminoácidos , Sequência de Bases , DNA de Plantas/química , DNA de Plantas/genética , Dados de Sequência Molecular , Mutação , Fenótipo , Proteínas de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Poliploidia , RNA Mensageiro/genética , RNA de Plantas/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Triticum/metabolismo , Técnicas do Sistema de Duplo-Híbrido
11.
Funct Integr Genomics ; 10(4): 509-21, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20464438

RESUMO

The barley mutant allele sdw3 confers a gibberellin-insensitive, semi-dwarf phenotype with potential for breeding of new semi-dwarfed barley cultivars. Towards map-based cloning, sdw3 was delimited by high-resolution genetic mapping to a 0.04 cM interval in a "cold spot" of recombination of the proximal region of the short arm of barley chromosome 2H. Extensive synteny between the barley Sdw3 locus (Hvu_sdw3) and the orthologous regions (Osa_sdw3, Sbi_sdw3, Bsy_sdw3) of three other grass species (Oryza sativa, Sorghum bicolor, Brachypodium sylvaticum) allowed for efficient synteny-based marker saturation in the target interval. Comparative sequence analysis revealed colinearity for 23 out of the 38, 35, and 29 genes identified in Brachypodium, rice, and Sorghum, respectively. Markers co-segregating with Hvu_sdw3 were generated from two of these genes. Initial attempts at chromosome walking in barley were performed with seven orthologous gene probes which were delimiting physical distances of 223, 123, and 127 kb in Brachypodium, rice, and Sorghum, respectively. Six non-overlapping small bacterial artificial chromosome (BAC) clone contigs (cumulative length of 670 kb) were obtained, which indicated a considerably larger physical size of Hvu_sdw3. Low-pass sequencing of selected BAC clones from these barley contigs exhibited a substantially lower gene frequency per physical distance and the presence of additional non-colinear genes. Four candidate genes for sdw3 were identified within barley BAC sequences that either co-segregated with the gene sdw3 or were located adjacent to these co-segregating genes. Identification of genic sequences in the sdw3 context provides tools for marker-assisted selection. Eventual identification of the actual gene will contribute new information for a basic understanding of the mechanisms underlying growth regulation in barley.


Assuntos
Mapeamento Cromossômico , Genes de Plantas , Hordeum/genética , Sintenia , Sequência de Bases , Brachypodium/genética , Cromossomos Artificiais Bacterianos , Cromossomos de Plantas , Marcadores Genéticos , Genoma de Planta , Genótipo , Giberelinas/farmacologia , Dados de Sequência Molecular , Oryza/genética , Reguladores de Crescimento de Plantas/farmacologia , Polimorfismo Genético , Plântula/efeitos dos fármacos , Plântula/fisiologia , Sorghum/genética
12.
Plant Signal Behav ; 4(7): 669-71, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19820343

RESUMO

Piriformospora indica is a mutualistic root-colonising basidiomycete that tranfers various benefits to colonized host plants including growth promotion, yield increases as well as abiotic and biotic stress tolerance. The fungus is characterized by a broad host spectrum encompassing various monocots and dicots. Our recent microarray-based studies indicate a general plant defense suppression by P. indica and significant changes in the GA biosynthesis pathway. Furthermore, barley plants impaired in GA synthesis and perception showed a significant reduction in mutualistic colonization, which was associated with an elevated expression of defense-related genes. Here, we discuss the importance of plant hormones for compatibility in plant root-P. indica associations. Our data might provide a first explanation for the colonization success of the fungus in a wide range of higher plants.

13.
Plant J ; 59(3): 461-74, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19392709

RESUMO

Fungi of the order Sebacinales (Basidiomycota) are involved in a wide spectrum of mutualistic symbioses with various plants, thereby exhibiting unique potential for biocontrol strategies. Piriformospora indica, a model organism of this fungal order, is able to increase the biomass and grain yield of crop plants, and induces local and systemic resistance to fungal diseases and tolerance to abiotic stress. To elucidate the molecular basis for root colonization, we characterized the interaction of P. indica with barley roots by combining global gene expression profiling, metabolic profiling, and genetic studies. At the metabolic level, we show that fungal colonization reduces the availability of free sugars and amino acids to the root tip. At the transcriptional level, consecutive interaction stages covering pre-penetration-associated events and progressing through to root colonization showed differential regulation of signal perception and transduction components, secondary metabolism, and genes associated with membrane transport. Moreover, we observed stage-specific up-regulation of genes involved in phytohormone metabolism, mainly encompassing gibberellin, auxin and abscisic acid, but salicylic acid-associated gene expression was suppressed. The changes in hormone homoeostasis were accompanied with a general suppression of the plant innate immune system. Further genetic studies showed reduced fungal colonization in mutants that are impaired in gibberellin synthesis as well as perception, and implicate gibberellin as a modulator of the root's basal defence. Our data further reveal the complexity of compatibility mechanisms in host-microbe interactions, and identify gibberellin signaling as potential target for successful fungi.


Assuntos
Basidiomycota/fisiologia , Giberelinas/metabolismo , Hordeum/genética , Raízes de Plantas/microbiologia , Simbiose , Ácido Abscísico/metabolismo , DNA de Plantas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Hordeum/imunologia , Hordeum/metabolismo , Hordeum/microbiologia , Imunidade Inata , Ácidos Indolacéticos/metabolismo , Metaboloma , Análise de Sequência com Séries de Oligonucleotídeos , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo , Transdução de Sinais , Regulação para Cima
14.
Plant Cell Physiol ; 50(3): 554-71, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19181700

RESUMO

The elongation (elo) mutants of barley (Hordeum vulgare cv 'Himalaya') are a class of dwarf plants with defects affecting cell expansion. The phenotypes of mutants in three of the elo loci (elo1, elo2 and elo3) are recessive to the wild-type allele, and the mutations at elo-4 and elo-5 are semi-dominant. Allelism tests showed that elo1, elo2 and elo3 were at separate loci, and mapping data indicated that elo-5 was possibly allelic to either elo1 or elo2. A phenotype common to all elo mutants was the presence of short, radially swollen cells on the leaf epidermis, indicating a defect in longitudinal cell expansion. In three of the mutants, elo1, elo3 and elo5, this was accompanied by a twisting growth habit. Two of the mutations, elo2 and elo-5, affected cell division, with aberrant periclinal cell division resulting in the formation of increased cell layers in the leaf epidermis of elo2 and elo-5 homozygotes and in the aleurone layer of elo2 grains. Misplaced anticlinal divisions also occurred in the elo-5 leaf epidermis. Leaf cell walls of all elo lines contained less cellulose than the wild- type, and the cortical microtubules in elongating root epidermal cells in some elo lines were more randomly oriented than in the wild-type, consistent with the presence of radially swollen cells. We discuss possible functions for the Elo genes in primary cell wall synthesis.


Assuntos
Crescimento Celular , Parede Celular/química , Hordeum/genética , Folhas de Planta/citologia , Alelos , Divisão Celular , Celulose/análise , Hordeum/citologia , Microtúbulos/ultraestrutura , Mutação , Fenótipo , Epiderme Vegetal/citologia , Epiderme Vegetal/genética , Folhas de Planta/genética , Raízes de Plantas/citologia , Raízes de Plantas/genética
15.
J Agric Food Chem ; 57(10): 4042-50, 2009 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21314195

RESUMO

Near-infrared reflectance (NIR) spectroscopy was used in the characterization of grain morphology mutants of barley ( Hordeum vulgare L.) in relation to grain nitrogen (N) content and protein composition. Derivative spectroscopy provided spectra with enhanced resolution, allowing wavelengths to be identified with clear differences in contribution from associated chemical bonds. Comparisons of fourth-derivative spectra of wholemeal flour from high-N grains with flour from low-N grains identified wavelengths at which there were statistically significant differences between the groups. Their importance was independently confirmed by step-up regression using these wavelengths to generate an equation predicting N content (R(2) = 0.98). Fourth-derivative spectral comparisons also allowed novel biochemical differences to be predicted. Visual assessment of the spectra of all mutants revealed a variable region (1470-1520 nm, corresponding to N-H stretch vibrations) that allowed two extreme sets to be defined. The protein extracted from these two sets differed markedly in hordein content.


Assuntos
Hordeum/classificação , Hordeum/genética , Mutação/genética , Sementes/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Farinha/análise , Glutens/análise , Nitrogênio/análise , Proteínas de Plantas/análise , Sementes/anatomia & histologia , Sementes/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
16.
Org Biomol Chem ; 6(8): 1416-24, 2008 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-18385848

RESUMO

As part of a study to confirm putative structural assignments to new gibberellins and to furnish sufficient quantities for biological investigations, a twenty step synthesis of 18-hydroxy GA1 from gibberellic acid (GA3) is described, allowing the confirmation of structure for a new gibberellin, GA132, that occurs in developing grains of barley (Hordeum vulgare). The early part of the sequence involved cleavage of the C(3)-C(4) bond in the A-ring of a 3-oxo intermediate. The ring was then reformed as part of a "domino" process involving the conjugate addition of alkoxide to an alpha-methylene lactone moiety followed by an intramolecular aldol reaction. The bioactivities of the new GA, and its 18-hydroxy-GA4 relative, have been confirmed in dwarf barley growth and alpha-amylase induction assays.


Assuntos
Giberelinas/síntese química , Giberelinas/farmacologia , Hordeum/efeitos dos fármacos , alfa-Amilases/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Giberelinas/química , Hordeum/crescimento & desenvolvimento , Conformação Molecular , Estereoisomerismo
17.
Mol Plant ; 1(2): 285-94, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19825540

RESUMO

The sequence of Gid1 (a gene for a gibberellin (GA) receptor from rice) was used to identify a putative orthologue from barley. This was expressed in E. coli, and produced a protein that was able to bind GA in vitro with both structural specificity and saturability. Its potential role in GA responses was investigated using barley mutants with reduced GA sensitivity (gse1 mutants). Sixteen different gse1 mutants each carried a unique nucleotide substitution in this sequence. In all but one case, these changes resulted in single amino acid substitutions, and, for the remaining mutant, a substitution in the 5' untranslated region of the mRNA is proposed to interfere with translation initiation. There was perfect linkage in segregating populations between new mutant alleles and the gse1 phenotype, leading to the conclusion that the putative GID1 GA receptor sequence in barley corresponds to the Gse1 locus. Determination of endogenous GA contents in one of the mutants revealed enhanced accumulation of bioactive GA(1), and a deficit of C(20) GA precursors. All of the gse1 mutants had reduced sensitivity to exogenous GA(3), and to AC94377 (a GA analogue) at concentrations that are normally 'saturating', but, at much higher concentrations, there was often a considerable response. The comparison between barley and rice mutants reveals interesting differences between these two cereal species in GA hormonal physiology.


Assuntos
Regiões 5' não Traduzidas/genética , Giberelinas/genética , Hordeum/metabolismo , Receptores de Superfície Celular/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Mapeamento Cromossômico , Giberelinas/metabolismo , Hordeum/genética , Dados de Sequência Molecular , Mutação , Mutação de Sentido Incorreto , Oryza/genética , Fenótipo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Biossíntese de Proteínas , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Homologia de Sequência de Aminoácidos
18.
Plant Physiol ; 141(2): 498-507, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16581877

RESUMO

Seasonal control of flowering often involves leaf sensing of daylength coupled to time measurement and generation and transport of florigenic signals to the shoot apex. We show that transmitted signals in the grass Lolium temulentum may include gibberellins (GAs) and the FLOWERING LOCUS T (FT) gene. Within 2 h of starting a florally inductive long day (LD), expression of a 20-oxidase GA biosynthetic gene increases in the leaf; its product, GA(20), then increases 5.7-fold versus short day; its substrate, GA(19), decreases equivalently; and a bioactive product, GA(5), increases 4-fold. A link between flowering, LD, GAs, and GA biosynthesis is shown in three ways: (1) applied GA(19) became florigenic on exposure to LD; (2) expression of LtGA20ox1, an important GA biosynthetic gene, increased in a florally effective LD involving incandescent lamps, but not with noninductive fluorescent lamps; and (3) paclobutrazol, an inhibitor of an early step of GA biosynthesis, blocked flowering, but only if applied before the LD. Expression studies of a 2-oxidase catabolic gene showed no changes favoring a GA increase. Thus, the early LD increase in leaf GA(5) biosynthesis, coupled with subsequent doubling in GA(5) content at the shoot apex, provides a substantial trail of evidence for GA(5) as a LD florigen. LD signaling may also involve transport of FT mRNA or protein because expression of LtFT and LtCONSTANS increased rapidly, substantially (>80-fold for FT), and independently of GA. However, because a LD from fluorescent lamps induced LtFT expression but not flowering, the nature of the light response of FT requires clarification.


Assuntos
Flores , Giberelinas/fisiologia , Proteínas de Plantas/genética , Poaceae/fisiologia , Sequência de Bases , Clonagem Molecular , Primers do DNA , Giberelinas/biossíntese , Dados de Sequência Molecular , Poaceae/genética
19.
Theor Appl Genet ; 109(4): 847-55, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15146318

RESUMO

Gene sequences encoding gibberellin (GA) biosynthetic and catabolic enzymes were isolated from "Himalaya" barley. These genes account for most of the enzymes required for the core pathway of GA biosynthesis as well as for the first major catabolic enzyme. By means of DNA gel blot analysis, we mapped coding sequences to chromosome arms in barley and wheat using barley-wheat chromosome addition lines, nulli-tetrasomic substitution and ditelosomic lines of wheat. These same sequences were used to identify closely related sequences from rice, which were mapped in silico, thereby allowing their syntenic relationship with map locations in barley and wheat to be investigated. Determination of the chromosome arm locations for GA metabolic genes provides a framework for future studies investigating possible identity between GA metabolic genes and dwarfing genes in barley and wheat.


Assuntos
Enzimas/genética , Giberelinas/metabolismo , Hordeum/genética , Oryza/genética , Triticum/genética , Sequência de Aminoácidos , Sequência de Bases , Mapeamento Cromossômico , Análise por Conglomerados , Enzimas/metabolismo , Biblioteca Gênica , Hordeum/enzimologia , Dados de Sequência Molecular , Polimorfismo de Fragmento de Restrição , Alinhamento de Sequência , Análise de Sequência de DNA , Sintenia/genética
20.
Plant Physiol ; 134(2): 769-76, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14730077

RESUMO

Multiple gibberellins (GAs) were quantified in the stems of intact, decapitated, and decapitated auxin-treated barley (Hordeum vulgare) plants. Removal of the developing inflorescence reduced the endogenous levels of indole-3-acetic acid (IAA), GA(1), and GA(3) and increased the level of GA(29) in internodal and nodal tissues below the site of excision. Application of IAA to the excised stump restored GA levels to normal in almost all cases. The conversion of [(14)C]GA(20) to bioactive [(14)C]GA(1) and of [(14)C]GA(5) to bioactive [(14)C]GA(3) was reduced by decapitation, and IAA application was able to restore conversion rates back to the levels found in intact plants. The amount of mRNA for the principal vegetative 3-oxidase (converting GA(20) to GA(1), and GA(5) to GA(3)) was decreased in decapitated plants and restored by IAA application. The results indicate that the inflorescence of barley is a source of IAA that is transported basipetally into the internodes and nodes where bioactive GA(1) and GA(3) are biosynthesized. Thus, IAA is required for normal GA biosynthesis in stems, acting at multiple steps in the latter part of the pathway.


Assuntos
Flores/metabolismo , Giberelinas/biossíntese , Hordeum/metabolismo , Ácidos Indolacéticos/farmacologia , Caules de Planta/metabolismo , Transdução de Sinais/fisiologia , Radioisótopos de Carbono/metabolismo , Flores/crescimento & desenvolvimento , Giberelinas/metabolismo , Hordeum/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/farmacologia , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...