Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(15)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34361297

RESUMO

Two-dimensional rare-earth silicide layers deposited on silicon substrates have been intensively investigated in the last decade, as they can be exploited both as Ohmic contacts or as photodetectors, depending on the substrate doping. In this study, we characterize rare-earth silicide layers on the Si(111) surface by a spectroscopic analysis. In detail, we combine Raman and reflectance anisotropy spectroscopy (RAS) with first-principles calculations in the framework of the density functional theory. RAS suggests a weakly isotropic surface, and Raman spectroscopy reveals the presence of surface localized phonons. Atomistic calculations allow to assign the detected Raman peaks to phonon modes localized at the silicide layer. The good agreement between the calculations and the measurements provides a strong argument for the employed structural model.

2.
Nat Chem ; 13(9): 828-835, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34155377

RESUMO

N-Heterocyclic carbenes (NHCs) are promising modifiers and anchors for surface functionalization and offer some advantages over thiol-based systems. Because of their strong binding affinity and high electron donation, NHCs can dramatically change the properties of the surfaces to which they are bonded. Highly ordered NHC monolayers have so far been limited to metal surfaces. Silicon, however, remains the element of choice in semiconductor devices and its modification is therefore of utmost importance for electronic industries. Here, a comprehensive study on the adsorption of NHCs on silicon is presented. We find covalently bound NHC molecules in an upright adsorption geometry and demonstrate the formation of highly ordered monolayers exhibiting good thermal stability and strong work function reductions. The structure and ordering of the monolayers is controlled by the substrate geometry and reactivity and in particular by the NHC side groups. These findings pave the way towards a tailor-made organic functionalization of silicon surfaces and, thanks to the high modularity of NHCs, new electronic and optoelectronic applications.

3.
J Phys Chem Lett ; 6(18): 3615-20, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26722731

RESUMO

The Si(111)-5×2-Au surface is increasingly of interest because it is one of the rare atomic chain systems with quasi-one-dimensional properties. For the deposition of 0.7 monolayers of Au, these chains are metallic. Upon the evaporation of an additional submonolayer amount of gold, the surface becomes insulating but keeps the 5×2 symmetry. This metal-to-insulator transition was in situ monitored based on the infrared plasmonic signal change with coverage. The phase transition is theoretically explained by total-energy and band-structure calculations. Accordingly, it can be understood in terms of the occupation of the originally half-filled one-dimensional band at the Fermi level. By annealing the system, the additional gold is removed from the surface and the plasmonic signal is recovered, which underlines the stability of the metallic structure. So, recent results on the infrared plasmonic signals of the Si(111)-5 × 2-Au surface are supported. The understanding of potential one-dimensional electrical interconnects is improved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...