Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
J Environ Manage ; 351: 119938, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171124

RESUMO

Municipal wastewater treatment plants (MWWTPs) are a milieu for co-occurrence of multiple antibiotic resistance genes (ARGs). This facilitates mixing and genetic exchange; and promotes dissemination of multidrug resistance (MDR) to wastewater bacterial communities which is hazardous for the effluent receiving environment. This study investigated the co-occurrence of extended-spectrum beta-lactamase (ESBL) genes (blaTEM, blaCTX-M, blaSHV, blaOXA), and integron-integrase genes (intI1, intI2, intI3) in MDR bacteria isolated from the Bharwara MWWTP in Lucknow, India. Thirty-one MDR bacterial colonies resistant to three or more antibiotics were isolated from three treatment stages of this MWWTP. Six of these: Staphylococcus aureus, Serratia marcescens, Salmonella enterica, Shigella sonnei, Escherichia coli, and Bacillus sp. Had co-occurrence of ESBL and integron-integrase genes. These six isolates were examined for the occurrence of MDR efflux genes (qacA, acrB) and ARGs (aac(3)-1, qnrA1, tetA, vanA) and tested for resistance against 12 different antibiotics. The highest resistance was against penicillin-G (100%) and lowest for chloramphenicol (16.66%). Bacillus sp. Isolate BWKRC6 had the highest co-occurrence of antibiotic resistance-determining genes and was resistant to all the 12 antibiotics tested. The co-occurrence of ESBL, integron-integrase, antibiotic resistance-determining and MDR efflux genes in bacteria isolated from the Bharwara MWWTP indicates that the wastewaters of this treatment plant may have become a hotspot for MDR bacteria and may present human and environmental health hazards. Therefore, there is need for a rapid action to limit the spread of this threat. Public regulatory authorities must urgently implement measures to prevent MWWTPs becoming reservoirs for evolution of antibiotic resistance genes and development of antibiotic resistance.


Assuntos
Bacillus , Purificação da Água , Humanos , beta-Lactamases/genética , Integrons/genética , Integrases , Bactérias , Antibacterianos/farmacologia , Escherichia coli , Águas Residuárias , Resistência a Múltiplos Medicamentos , Farmacorresistência Bacteriana Múltipla/genética
2.
Chemosphere ; 349: 140742, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38013027

RESUMO

Currently, scarcity/security of clean water and energy resources are the most serious problems worldwide. Industries use large volume of ground water and a variety of chemicals to manufacture the products and discharge large volume of wastewater into environment, which causes severe impacts on environment and public health. Fossil fuels are considered as major energy resources for electricity and transportation sectors, which release large amount of CO2 and micro/macro pollutants, leading to cause the global warming and public health hazards. Therefore, algae-bacterial consortium (A-BC) may be eco-friendly, cost-effective and sustainable alternative way to treat the industrial wastewaters (IWWs) with Bio-H2 production. A-BC has potential to reduce the global warming and eutrophication. It also protects environment and public health as it converts toxic IWWs into non or less toxic (biomass). It also reduces 94%, 90% and 50% input costs of nutrients, freshwater and energy, respectively during IWWs treatment and Bio-H2 production. Most importantly, it produce sustainable alternative (Bio-H2) to replace use of fossil fuels and fill the world's energy demand in eco-friendly manner. Thus, this review paper provides a detailed knowledge on industrial wastewaters, their pollutants and toxic effects on water/soil/plant/humans and animals. It also provides an overview on A-BC, IWWs treatment, Bio-H2 production, fermentation process and its enhancement methods. Further, various molecular and analytical techniques are also discussed to characterize the A-BC structure, interactions, metabolites and Bio-H2 yield. The significance of A-BC, recent update, challenges and future prospects are also discussed.


Assuntos
Poluentes Ambientais , Águas Residuárias , Humanos , Bactérias , Plantas , Combustíveis Fósseis , Biomassa , Água , Biocombustíveis
3.
Heliyon ; 9(11): e22148, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38045140

RESUMO

The present study was carried out in a pot experiment to examine the bioefficacy of three biocontrol agents, viz., Trichoderma viride, Bacillus subtilis, and Pseudomonas fluorescens, either alone or in consortium, on plant growth promotion and activation of defense responses in potato against the early blight pathogen Alternaria solani. The results demonstrate significant enhancement in growth parameters in plants bioprimed with the triple-microbe consortium compared to other treatments. In potato, the disease incidence percentage was significantly reduced in plants treated with the triple-microbe consortium compared to untreated control plants challenged with A. solani. Potato tubers treated with the consortium and challenged with pathogen showed significant activation of defense-related enzymes such as peroxidase (PO) at 96 h after pathogen inoculation (hapi) while, both polyphenol oxidase (PPO), and phenylalanine ammonia-lyase (PAL) at 72 hapi, compared to the individual and dual microbial consortia-treated plants. The expression of antioxidant enzymes like superoxide dismutase (SOD) and catalase (CAT) and the accumulation of pathogenesis-related proteins such as chitinase and ß-1,3-glucanase were observed to be highest at 72 hapi in the triple microbe consortium as compared to other treatments. HPLC analysis revealed significant induction in polyphenolic compounds in triple-consortium bioprimed plants compared to the control at 72 hapi. Histochemical analysis of hydrogen peroxide (H2O2) clearly showed maximum accumulation of H2O2 in pathogen-inoculated control plants, while the lowest was observed in triple-microbe consortium at 72 hapi. The findings of this study suggest that biopriming with a microbial consortium improved plant growth and triggered defense responses against A. solani through the induction of systemic resistance via modulation of the phenylpropanoid pathway and antioxidative network.

4.
Food Sci Biotechnol ; 32(10): 1303-1335, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37457402

RESUMO

Drying is an energy-intensive process that can be reduced by the application of pretreatment prior to drying to enhance mass transfer and minimize energy consumption. This review summarizes the mechanistic aspects and applications of emerging pretreatment approaches, namely ohmic heating (OH), ultrasound (US), high pressure processing (HPP), and pulsed electric field (PEF), with emphasis on the enhancement of mass transfer and quality attributes of foods. Novel pretreatments significantly improved the drying efficiency by increasing mass transfer, cavitation, and microchannel formation within the cell structure. Various processing parameters have great influence on the drying performance and quality attributes of foods. Several studies have shown that novel pretreatments (individual and combined) can significantly save energy while improving the overall drying performance and retaining the quality attributes. This work would be useful for understanding the mechanisms of novel pretreatment technologies and their applications for future commercial research and development activities.

5.
Environ Res ; 234: 116286, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37263473

RESUMO

Carbon emissions and associated global warming have become a threat to the world, the major contributor being the extensive use of fossil fuels and uncontrolled generation of solid wastes. Energy generation from renewable energy sources is considered an alternative to achieving carbon neutrality. Anaerobic digestion (AD) is a sustainable technology that has been endorsed as a low-carbon technology complimenting both waste management and renewable energy sectors. The AD technology recovers the volatile matter from waste biomass as much as possible to produce biogas, thus reducing carbon emission as compared to open dumping or burning. However, there is a need of compilation of information on how each subsystem in AD contributes to the overall carbon neutrality of the entire system and chances of achieving a circular economy along with it. Therefore, this article aims to clarify the associated internal and external factors that determine the low carbon characteristic of anaerobic digestion technology. From this review, the potential of AD system for energy-atmosphere-agriculture nexus has been explored. Carbon emission mapping of the potential entities involved in AD were identified and perspective to life cycle assessment and future research direction has been pointed out. Climate change impact and acidification potential are the two entities that can influence the overall environmental sustainability of an AD system. It was recognized that each stage of AD system starting from substrate supply chain, biogas production, upgradation, utilization, and digestate application had a remarkable effect on the overall carbon emission potential based on its design, operation, and maintenance. Selection of suitable substrates and co-digesting them together for improved biogas production rate with high methane content and proper digestate post-processing and storage can vastly reduce the carbon emission potential of the AD technology. Further, a case scenario of India was assessed considering the utilization of major surplus biomass available through AD. Re-routing the three major substrates such as agricultural crop residues, animal wastes and organic fraction of municipal solid wastes through AD can reduce at least 3.5-3.8 kg CO2-eq per capita of annual carbon emission load in India. Furthermore, the pathways in which the policy and legislations over establishment of AD technology and how to explore linkages between achieving circular economy and low carbon economy for Indian scenario has been highlighted.


Assuntos
Biocombustíveis , Resíduos Sólidos , Animais , Anaerobiose , Biomassa , Carbono , Tecnologia
6.
J Hazard Mater ; 452: 131291, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36989794

RESUMO

Distillery spent wash (DSW) from molasses-based distilleries is being used as a low-cost alternative to chemical fertilizers in countries like India and Brazil. However, using DSW as a fertilizer substitute causes organic pollutant leaching, including melanoidins and caramel colourants that turn bodies of water dark brown. This study investigated the arbuscular mycorrhiza (AM) mediated degradation of organic pollutants in DSW. Mycorrhizal and non-mycorrhizal Sorghum bicolor were grown in microcosms for 16 weeks. The plants were fertilized with either raw DSW or Hoagland solution. Leachates draining from the microcosms after fertilization were collected three times in 30-day intervals. Each 30-day collection was preceded by two fertilizations. A gas chromatography-mass spectrometry comparative analyses of raw DSW with leachates of the third collection from mycorrhizal and non-mycorrhizal microcosms was made. Sixty-five and 42 complex organic compounds were detected in raw DSW and leachate collected from the non-mycorrhizal pots respectively. Only 26 compounds were detected in leachate collected from mycorrhizal pots. Absent from leachate of the mycorrhizal pots were: colour-containing organic compounds diacetone alcohol; 3-amino-2-cyano-6-methyl-6,7-dihydrothieno[2,3-b]pyrazine S-oxide; cyclohexane; 1,2-benzenedicarboxylic acid, butyl 8-methylnonyl ester; 2-pyrrolidinone; and acetic acid, dodecyl ester present in raw DSW. The results indicate that AM fungi can degrade organic pollutants in DSW.


Assuntos
Poluentes Ambientais , Micorrizas , Cor , Óxidos , Ésteres
7.
Environ Res ; 226: 115618, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36921788

RESUMO

The presence of lignin along with other pollutants makes effluent more complex when it is discharged from Pulp and paper mills. The present study investigates the use of biofilm-forming bacteria isolated from pulp paper mill effluent contaminated sites (PPMECSs) for lignin degradation. Isolated biofilm-forming and lignin-degrading bacteria were identified as Bacillus subtilis, Enterobacter cancerogenus, and Bacillus licheniformis by 16S rRNA gene sequencing. Thin liquid chromatography (TLC) analysis showed that the consortium of bacteria produced acyl-homoserine lactone (AHL) as quorum sensing molecules and extracellular polymeric substances (EPS) that protect the bacterial consortium under unfavorable conditions. The potential consortium was able to reduce lignin (900 ppm) by 73% after 8 days of incubation in a minimal salt medium containing kraft lignin and glucose at pH 7.0 and 37 °C as compared to individual strains. The degradation by-products were identified as amides, alcohols, and acids. The major organic pollutants in the effluent were reduced after treatment of the constructed consortium, thus confirming active biotransformation and biodegradation of the lignin. Microscopic examination also indicated the presence of lignin induced biofilm formation. Hence, the constructed biofilm-forming bacterial consortia based on quorum sensing offered a sustainable and effective solution to treat lignin-containing complex pollutants.


Assuntos
Poluentes Ambientais , Percepção de Quorum , Lignina , RNA Ribossômico 16S , Biofilmes , Bactérias/genética , Bactérias/metabolismo
8.
J Contam Hydrol ; 254: 104139, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36642008

RESUMO

India faces major challenges related to fresh water supply and the reuse of treated wastewater is an important strategy to combat water scarcity. Wastewater in Gorakhpur, India, is treated by a decentralised wastewater treatment system (DEWATS) and the treated wastewater is reused in the rural area. This research provides important scientific data that ascertain the safety of wastewater reuse in this region. The physicochemical characteristics, including pigment, ionic strength, BOD, COD, TDS, TSS, salinity, total N, ammonium N, phenolics, heavy metals, and sulphate, of the inlet and outlet sewage water samples (SWWs) from a wastewater treatment facility was conducted. These parameters were found to be significantly over the national limit. The inlet and outlet samples were further characterised by using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR) and gas chromatography-mass spectrometry (GC-MS). SEM showed microstructure and the presence of various metals, polymers, and other co-pollutants in the samples and FT-IR confirmed the presence of aldehyde, hard liquor, and nitrogen molecules in the SWW's discharge. Many endocrine disruptors and potentially mutagenic chemical substances (e.g., Dodecane, Hexadecane, Octadecane etc.) were identified in the outlet SWW by the GC-MS analysis. Toxicity of the SWW was assessed via phytotoxicity assessment using Phaseolus mungo L. and histological and biochemical analyses of Heteropneustes fossilis in a 24-h exposure study. Results confirmed the wastewater was harmful and inhibited germination of P. mungo L. by >80% compared to the control, destroyed gill laminae and significantly increased oxidative stress (above 5% increase in catalase production) in H. fossilis. This work clearly demonstrated that the quality of the treated wastewater in Gorakhpur was poor and immediate action is needed before it can be discharged or reused.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Esgotos/análise , Poluentes Ambientais/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Eliminação de Resíduos Líquidos
9.
J Environ Manage ; 332: 117294, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36708597

RESUMO

The aim of the study is to explore the potential rhizospheric bacterial communities associated with Cannabis sativa L. (Cannabis); growing on the complex pollutant-rich distillery sludge. Seven bacterial species were isolated, among which four potential bacterial species were characterized based on the 16s rRNA sequencing from the rhizosphere sludge of C. sativa; they are Bacillus thuringiensis (MW887525), Bacillus cereus (MW887524), Achromobacter denitrificans (MW886333), Bacillus subtilis (MW886231). The isolated bacteria showed PGPR attributes and potential for ligninolytic enzyme activity. Further, to correlate these bacteria with organic pollutants of sludge, the GC-MS analysis of fresh disposed distillery sludge and after growth of 30 and 60 days C. sativa was also analysed, which showed the conversion and disappearance of compounds by the activity of rhizospheric bacterial communities. Additionally, C. sativa showed a higher metal accumulation pattern of Fe (801.81 ± 0.123)> Cu (275.086 ± 0.069)> Zn (162.15 ± 0.085)> Mn (63.92 ± 0.093)> Pb (28.619 ± 0.192)> Ni (5.02 ± 0.078)> Cd (2.53 ± 0.085)> Cr (1.87 ± 0.079) mg kg -1 in their shoot, root followed by leaf. The plant also showed BCF >1 and TF > 1 for most of the metals. Thus, this showed the phytoextraction properties of C. sativa from distillery sludge polluted sites. The findings of this study will enable to understand the functional role of rhizospheric bacterial community for the detoxification and degradation of complex organometallic waste, and will thus aid in the development of adequate phytoremediation techniques for the eco-restoration of polluted industrial sites for sustainable development.


Assuntos
Cannabis , Poluentes Ambientais , Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Cannabis/metabolismo , Poluentes Ambientais/análise , Esgotos/análise , RNA Ribossômico 16S , Poluentes do Solo/análise , Solo , Metais Pesados/análise , Plantas/metabolismo , Bacillus subtilis/metabolismo
10.
Plants (Basel) ; 11(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36559629

RESUMO

Pomegranate (Punica granatum, L.) is a fruit tree that is increasingly popular worldwide due to the health-related properties of the fruit juice. While several studies highlighted the rich phytochemical diversity, few efforts have been devoted to an integrative understanding of the level of diversity of this species. This study investigated the diversity of 40 pomegranate accessions in an Indian ex situ collection by using twenty-nine morphological traits, six biochemical parameters, and twenty-nine Simple Sequence Repeats (SSR) markers. Among the evaluated traits, fruit volume (23.34% CV), fruit weight (21.12% CV), and fruit color (*a) (22.69 % CV) largely contributed to the morphological classification. Based on Mahalanobis D2 distance and Tocher's clustering, the 40 pomegranate accessions were grouped into eight clusters, partly consistent with their origin. Specifically, cultivars introduced from foreign countries were present in distinct clusters. The SSR marker analysis generated 66 alleles. The observed heterozygosity values ranged from 0.05 to 0.63, with a mean value of 0.30. Maximum molecular genetic dissimilarity was observed between 'IC-318720' and 'Gul-e-Shah Red' (0.30). The neighbor-joining dendrogram separated wild accessions from cultivated varieties. The combination of morphological, biochemical, and molecular characterization allowed for comprehensively characterizing the pomegranate diversity and provided information on the relationships between the different aspects of the diversity. This work also suggests that the origin of the accessions is an important factor of discrimination and that the level of admixture between local and foreign material is currently limited.

11.
Environ Monit Assess ; 195(1): 75, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36334179

RESUMO

Quorum sensing (QS) is a system of bacteria in which cells communicate with each other; it is linked to cell density in the microbiome. The high-density colony population can provide enough small molecular signals to enable a range of cellular activities, gene expression, pathogenicity, and antibiotic resistance that cause damage to the hosts. QS is the basis of chronic illnesses in human due to microbial sporulation, expression of virulence factors, biofilm formation, secretion of enzymes, or production of membrane vesicles. The transfer of antimicrobial resistance gene (ARG) among antibiotic resistance bacteria is a major public health concern. QS-mediated biofilm is a hub for ARG horizontal gene transfer. To develop innovative approach to prevent microbial pathogenesis, it is essential to understand the role of QS especially in response to environmental stressors such as exposure to antibiotics. This review provides the latest knowledge on the relationship of QS and pathogenicity and explore the novel approach to control QS via quorum quenching (QQ) using QS inhibitors (QSIs) and QQ enzymes. The state-of-the art knowledge on the role of QS and the potential of using QQ will help to overcome the threats of rapidly emerging bacterial pathogenesis.


Assuntos
Anti-Infecciosos , Percepção de Quorum , Humanos , Percepção de Quorum/fisiologia , Virulência , Monitoramento Ambiental , Bactérias , Biofilmes , Antibacterianos/toxicidade , Antibacterianos/metabolismo , Anti-Infecciosos/metabolismo
12.
Arch Microbiol ; 204(10): 642, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36161364

RESUMO

Aim of this study was to optimize the production of Ligninolytic enzyme for the degradation of complex pollutants present in pulp paper industrial effluent (PPIE). Two ligninolytic enzyme-producing bacterial strains were isolated from PPIE and identified as Bacillus paramycoides strain BL2 (MZ676667) and Micrococcus luteus strains BL3 (MZ676668). The identified bacterial strain Bacillus paramycoides strain BL2 showed optimum production of LiP (4.30 U/ml), MnP (3.38 U/ml) at 72 h of incubation, while laccase (4.43 U/ml) at 96 h of incubation. While, Micrococcus luteus strains BL3 produced maximum LiP (3.98) and MnP (3.85 U/ml) at 96 h of incubation and maximum laccase (3.85 U/ml) at 72 h of incubation, pH 7-8, and temperatures of 30-35 °C. Furthermore, in the presence of glucose (1.0%) and peptone (0.5%) as nutrient sources, the enzyme activity of consortium leads to reduction of lignin (70%), colour (63%) along with COD (71%) and BOD (58%). The pollutants detected in control i.e. 3.6-Dioxa-2,7-disilaoctane, 2-Heptnoic acid,trimethylsilyl ester, 7-Methyldinaphtho [2,1-b,1',2'-d] silole, Hexadeconoic acid, trimethylysilyl ester, Methyl1(Z)-3,3-dipheny.1-4-hexenoale, 2,6,10,14,18,22-Tetracosahexane,2,2-dimethylpropyl(2Z,6E)-10,11epoxy5,6 Dihyrostigmasterol, acetate were completely diminished. The toxicity of PPIE was reduced up to 75%. Hence, knowledge of this study will be very useful for industrial sector for treatment of complex wastewater.


Assuntos
Poluentes Ambientais , Lacase , Bacillus , Biodegradação Ambiental , Ésteres , Glucose , Lacase/metabolismo , Lignina/metabolismo , Micrococcus luteus/metabolismo , Peptonas , Peroxidases/metabolismo , Águas Residuárias/toxicidade
13.
Chemosphere ; 300: 134586, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35427655

RESUMO

Distillery wastewater has high biological and chemical oxygen demand and requires additional treatment before it can be safely discharged into receiving water. It is usually processed through a biomethanation digester and the end product is the post-methanated distillery effluent (PMDE). Research have shown that PMDE released by molasses-based distilleries is a hazardous effluent that can cause harm to the biota and the environment; it contains elevated amount of total dissolved solids (TDS), total suspended solids (TSS) and excess levels of persistent organic compounds (POPs), heavy metals, phenolic compounds, and salts. The practice of wastewater reuse for irrigation in many water scarce countries necessitates the proper treatment of PMDE before it is discharged into receiving water. Convention methods have been in practice for decades, but innovative technologies are needed to enhance the efficiency of PMDE treatment. Advance physical treatment such as membrane separation technology using graphene, ion-exchange and ultrafiltration membranes; chemical treatment such as advanced oxidation methods, electrocoagulation and photocatalytic technologies; biological treatment such as microbial and enzymatic treatment; and hybrid treatment such as microbial-fuel cell (MFC), genetically modified organisms (GMO) and constructed wetland technologies, are promising new methods to improve the quality of PMDE. This review provides insight into current accomplishments evaluates their suitability and discusses future developments in the detoxification of PMDE. The consolidated knowledge will help to develop a better management for the safe disposal and the reuse of PMDE wastewater.


Assuntos
Poluentes Ambientais , Resíduos Industriais , Análise da Demanda Biológica de Oxigênio , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias , Água
14.
Chemosphere ; 297: 134123, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35240156

RESUMO

Distillery industry generates a huge amount of wastewater, which contains a high strength of organic and inorganic load. Accordingly, this study aims to analyze the physico-chemical pollution parameters and the occurrence of phytotoxic, cytotoxic and genotoxic pollutants in wastewater. The result revealed that values of wastewater parameters were recorded as 13268 mg l-1 (BOD), 25144 mg l-1 (COD), 25144 mg l-1 (TS), and 6634 mg l-1 (phosphate), while pH was alkaline. The organic compounds detected by GC-MS were quercetin 7,3',4'-trimethoxy, octadecadienoic acid, propanoic acid, glycocholic acid methyl ester, cantaxanthin, etc. The Allium cepa was used for the toxicity test with different concentrations of wastewater showed a significant level of reduction in root growth and length after exposure and the maximum reduction was at 25% and 20%. Phytotoxicity studies were performed using Cicer arietinum L. with different concentrations of wastewater, which showed adverse effects on seed germination, root length, and the effect was associated with the increasing concentration of wastewater. A. cepa root tips were used for the analysis of mitotic index (MI), nuclear abnormalities (NA), and chromosomal aberrations (CA). MI was decreasing significantly from 72% (control) to 33%, 22%, 23%, 21%, and 18% at 5%, 10%, 15%, 20%, and 25% wastewater concentration, respectively. The A. cepa root tip cells showed chromosomal aberrations and nuclear abnormalities like vagrant, stickiness, chromosomal loss, c-mitosis, binucleated, micronuclei, and aberrant cell. This study concluded that the wastewater treatment process is insufficient and the discharged waste needs a proper assessment to know the associated health risk.


Assuntos
Cicer , Poluentes Ambientais , Aberrações Cromossômicas , Dano ao DNA , Poluentes Ambientais/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Meristema , Índice Mitótico , Cebolas/genética , Raízes de Plantas , Águas Residuárias/química
15.
Chemosphere ; 295: 133823, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35114263

RESUMO

Heavy metals phytoremediation from pulp and paper industry (PPI) sludge was conducted by employing root-associated Brevundimonas sp (PS-4 MN238722.1) in rhizospheric zone of Saccharum munja L. for its detoxification. The study was aimed to investigate the efficiency of Saccharum munja L. for the removal of heavy metals along with physico-chemical parameters through bacterial interactions. Physico-chemical examination of PPI sludge showed biochemical oxygen demand (8357 ± 94 mg kg-1), electrical conductivity (2264 ± 49 µmhoscm-1), total phenol (521 ± 24 mg kg-1), total dissolve solid (1547 ± 23 mg kg-1), total nitrogen (264 ± 2.13 mg kg-1), pH (8.2 ± 0.11), chemical oxygen demand (34756 ± 214 mg kg-1), color (2434 ± 45 Co-Pt), total suspended solid (76 ± 0.67 mg kg-1), sulphate (2462 ± 13 mg kg-1), chlorolignin (597 ± 13.01 mg kg-1), K+ (21.04 ± 0.26 mg kg-1), total solid (1740 ± 54 mg kg-1), phosphorous, Cl-, and Na+. Heavy metals, such as Fe followed by Zn, Mn, Cd, Cu, Ni, Pb, As, Cr and Hg were above the permissible limit. Root and shoot of Saccharum munja L. revealed highest concentrations of Cd followed by Mn, Ni, Fe, Zn, Cu, As, Cr, Hg, and Pb. Tested metals (Fe, Mn, Pb, Cd, Cr, Cu, Zn, Ni, As, and Hg) bioaccumulation and translocation factors were also revealed to be < 1 and >1, respectively, demonstrating that these plants have considerable absorption and translocation abilities. Plant growth-promoting activity, such as ligninolytic enzymes, hydrolytic enzymes, indole acetic acid, and siderophore production activity of Brevundimonas sp. (PS-4 MN238722.1) were also noted to be higher. These findings support the use of Brevundimonas sp (PS-4 MN238722.1) in combination with Saccharum munja L. plant as interdisciplinary management of industrial sludge at polluted areas for the prevention of soils near the industrial site.


Assuntos
Metais Pesados , Saccharum , Poluentes do Solo , Biodegradação Ambiental , Monitoramento Ambiental , Metais Pesados/análise , Solo , Poluentes do Solo/análise
16.
Chemosphere ; 295: 133892, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35134397

RESUMO

Due to the presence of various organic contaminants, improper disposal of pulp-paper wastewater poses harm to the environment and human health. In this work, pulp-paper sludge (PPS) after secondary treatment were collected from M/s Century Pulp-paper Mills in India, the chemical nature of the organic pollutants was determined after solvent extraction. All the isolates were able to produce lipase (6.34-3.93 U ml-1) which could account for the different fatty acids detected in the PPS. The dominant strains were in the classes of α and γ Proteobacteria followed by Firmicutes. The Shannon-Weiner diversity indexes for phylotype richness for the culturable and non-culturable bacterial community were 2.01 and 3.01, respectively, indicating the non-culturable bacterial strains has higher species richness and diversity compared to the culturable bacterial strains. However, the culturable strains had higher species evenness (0.94 vs 0.90). Results suggested only a few isolated strains were resistant to the POPs in the PPS, where as non-cultural bacteria survived by entering viable but non-cultural state. The isolated strains (Brevundimonas diminuta, Aeromonas punctata, Enterobacter hormaechei, Citrobacter braakii, Bacillus pumilus and Brevundimonas terrae) are known for their multidrug resistance but their tolerance to POPs have not previously been reported and deserved further investigation. The findings of this research established the presence of POPs which influence the microbial population. Tertiary treatment is recommended prior to the safe disposal of pulp paper mill waste into the environment.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Bactérias , Humanos , Resíduos Industriais/análise , Papel , Poluentes Orgânicos Persistentes , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos
17.
Environ Res ; 208: 112709, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35032541

RESUMO

Elevated levels of physico-chemical pollution including organic pollutants, metals and metalloids were detected in distillery sludges despite of the anaerobic digestion treatment prior to disposal. The concentrations of the metals were (in mg kg-1): Fe (400.98 ± 3.11), Zn (17.21 ± 0.54), Mn (8.32 ± 0.42), Ni (8.00 ± 0.98), Pb (5.09 ± 0.43), Cr (4.00 ± 0.98), and Cu (3.00 ± 0.10). An invasive grass species, Cynodon dactylon L., demonstrated its ability to remediate the distillery waste sludge (DWS) in the field study. All the physico-chemical parameters of the sludge significantly improved (up to 70-75%) in the presence of Cynodon dactylon L. (p < 0.001) than the control with no plant growth. The highest phytoremediation capacity was associated with the uptake of Fe in the root and shoot. Sludge samples collected near the rhizosphere also showed lower amount of organic compounds compared to control sludge samples. Metal resistant Bacillus cereus (RCS-4 MZ520573.1) was isolated from the rhizosphere of Cynodon dactylon L. and showed potential to enhance the process of phytoremediation via plant growth promoting activities such as production of high level of ligninolytic enzymes: manganese peroxidase (35.98 U), lignin peroxidase (23.98 U) and laccase (12.78 U), indole acetic acid (45.87(mgL-1), phosphatase activity (25.76 mg L-1) and siderophore production (23.09 mg L-1). This study presents information on the performance of Cynodon dactylon L., an abundant invasive perennial grass species and its associated plant growth promoting rhizobacteria demonstrated good capacity to remediate and restore contaminated soil contained complex organic and inorganic pollutants, they could be integrated into the disposal system of distillery sludge to improve the treatment efficiency.


Assuntos
Metais Pesados , Poluentes do Solo , Bacillus cereus , Biodegradação Ambiental , Cynodon , Metais Pesados/análise , Esgotos , Poluentes do Solo/análise
18.
Environ Pollut ; 292(Pt A): 118267, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34601036

RESUMO

Distillery sludge is a major source of aquatic pollution, but little is known about their microbial community and their association with the organic and metal pollutants. Sugarcane molasses-based distillery is an important industry in India, although the waste is usually treated prior to disposal, the treatment is often inadequate. The adverse effects of the organic and metal pollutants in sugarcane molasses-based distillery sludge on the microbial biodiversity and abundance in the disposal site have not been elucidated. This study aims to address this gap of knowledge. Samples were collected from the discharge point, 1 and 2 km downstream (D1, D2, and D3, respectively) of a sugarcane distillery in Uttar Pradesh, India, and their physico-chemical properties characterised. Using QIIME, taxonomic assignment for the V3 and V4 hypervariable regions of 16 S rRNA was performed. The phyla Proteobacteria (28-39%), Firmicutes (20-28%), Bacteriodetes (9-10%), Actinobacteria (5-10%), Tenericutes (1-9%) and Patescibacteria (2%) were the predominant bacteria in all three sites. Euryechaeota, were detected in sites D1 and D2 (1-2%) but absent in D3. Spirochaetes (5%), Sinergistetes (2%) and Cloacimonetes (1%) were only detected in samples from site D1. Shannon, Simpson, Chao1, and Observed-species indices indicated that site D1 (10.18, 0.0013, 36706.55 and 45653.84, respectively) has higher bacterial diversity and richness than D2 (6.66, 0.0001, 25987.71 and 49655.89, respectively) and D3 (8.31, 0.002, 30345.53 and 30654.88, respectively), suggesting the organic and metal pollutants provided the stressors to favour the survival of microbial community that can biodegrade and detoxify them in the distillery sludge. This study confirmed that the treatment of the distillery waste was not sufficiently effective and provided new metagenomic information on its impact on the surrounding microbial community. It also offered new insights into potential bioremediation candidates.


Assuntos
Poluentes Ambientais , Microbiota , Saccharum , Melaço , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias
19.
Environ Pollut ; 292(Pt B): 118342, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34653589

RESUMO

Restoring an environment contaminated with persistent organic pollutants (POPs) is highly challenging. Biodegradation by biofilm-forming bacteria through quorum sensing (QS) is a promising treatment process to remove these pollutants and promotes eco-restoration. QS plays an important role in biofilm formation, solubilization, and biotransformation of pollutants. QS is a density-based communication between microbial cells via signalling molecules, which coordinates specific characters and helps bacteria to acclimatize against stress conditions. Genetic diversification of a biofilm offers excellent opportunities for horizontal gene transfer, improves resistance against stress, and provides a suitable environment for the metabolism of POPs. To develop this technology in industrial scale, it is important to understand the fundamentals and ubiquitous nature of QS bacteria and appreciate the role of QS in the degradation of POPs. Currently, there are knowledge gaps regarding the environmental niche, abundance, and population of QS bacteria in wastewater treatment systems. This review aims to present up-to-date and state-of-the-art information on the roles of QS and QS-mediated strategies in industrial waste treatment including biological treatments (such as activated sludge), highlighting their potentials using examples from the pulp and paper mill industry, hydrocarbon remediation and phytoremediation. The information will help to provide a throughout understanding of the potential of QS to degrade POPs and advance the use of this technology. Current knowledge of QS strategies is limited to laboratory studies, full-scale applications remain challenging and more research is need to explore QS gene expression and test in full-scale reactors for wastewater treatment.


Assuntos
Resíduos Industriais , Percepção de Quorum , Biofilmes , Poluentes Orgânicos Persistentes , Esgotos
20.
J Environ Manage ; 296: 113182, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34229138

RESUMO

A field experiment was conducted during 2007-2019 under various rabi (winter) crops (viz., wheat, maize, barley and mustard) on a Vertisol in sub-tropical Indo-Gangetic Plains (IGP) with different tillage systems to assess energy indices, greenhouse gas (GHG) emission and carbon sustainability index in assured irrigated fields. The tillage systems were: no tillage sown by a zero till drill (NT), no tillage with retention of previous crop residues at 6 t ha-1 and sowing by a happy turbo seeder (HT), and conventional tillage (CT) where sowing was performed by a multi-crop zero till drill after twice harrowing + twice tilling + once rotavator operations. Significantly higher input energy was observed in wheat followed by maize, barley and mustard. Among tillage systems, CT plots consumed higher input energy that was about 20, 21 to 22, 25 to 26 and 20-22% higher than HT and NT in wheat, maize, barley and mustard, respectively. However, output energy and energy use efficiency were highest in HT. The total GHG emission (kg CO2 equivalent ha-1) was highest in wheat (2,351) followed by maize (2,274), barley (1,859) and mustard (1,652). Among tillage systems, CT produced about 31-34%, 33-34%, 37-40% and 28-30% higher GHG emission than HT and NT under wheat, maize, barley and mustard, respectively. The CT plots had lower carbon sustainability index and carbon efficiency than ZT and HT in all crops. In short, HT recorded significantly higher energy use efficiency and lower global warming potential (GWP) than CT in all crops. Thus, HT could be a promising agro-technique for production of rabi crops in the IGP. Among rabi crops, barley production was energy efficient and had less GWP. In rabi crop production, the highest energy sources was mineral fertilizer use (25-49%) and second highest source was irrigation water (14-44%). These can be substituted with use of the organic sources of fertilizers and application of solar and wind power in irrigation, respectively.


Assuntos
Aquecimento Global , Óxido Nitroso , Agricultura , Produtos Agrícolas , Óxido Nitroso/análise , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...