Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Metab ; 34(11): 1875-1891.e7, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36113464

RESUMO

Cardiomyopathy and heart failure are common manifestations in mitochondrial disease caused by deficiencies in the oxidative phosphorylation (OXPHOS) system of mitochondria. Here, we demonstrate that the cardiac-specific loss of the assembly factor Cox10 of the cytochrome c oxidase causes mitochondrial cardiomyopathy in mice, which is associated with OXPHOS deficiency, lysosomal defects, and an aberrant mitochondrial morphology. Activation of the mitochondrial peptidase Oma1 in Cox10-/- mice results in mitochondrial fragmentation and induction of the integrated stress response (ISR) along the Oma1-Dele1-Atf4 signaling axis. Ablation of Oma1 or Dele1 in Cox10-/- mice aggravates cardiomyopathy. ISR inhibition impairs the cardiac glutathione metabolism, limits the selenium-dependent accumulation of the glutathione peroxidase Gpx4, and increases lipid peroxidation in the heart, ultimately culminating in ferroptosis. Our results demonstrate a protective role of the Oma1-Dele1-mediated ISR in mitochondrial cardiomyopathy and link ferroptosis to OXPHOS deficiency and mitochondrial disease.


Assuntos
Alquil e Aril Transferases , Cardiomiopatias , Ferroptose , Camundongos , Animais , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Cardiomiopatias/metabolismo , Proteínas de Membrana/metabolismo , Metaloproteases/metabolismo
2.
Cell Rep ; 38(7): 110370, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35172139

RESUMO

The transition between quiescence and activation in neural stem and progenitor cells (NSPCs) is coupled with reversible changes in energy metabolism with key implications for lifelong NSPC self-renewal and neurogenesis. How this metabolic plasticity is ensured between NSPC activity states is unclear. We find that a state-specific rewiring of the mitochondrial proteome by the i-AAA peptidase YME1L is required to preserve NSPC self-renewal. YME1L controls the abundance of numerous mitochondrial substrates in quiescent NSPCs, and its deletion activates a differentiation program characterized by broad metabolic changes causing the irreversible shift away from a fatty-acid-oxidation-dependent state. Conditional Yme1l deletion in adult NSPCs in vivo results in defective self-renewal and premature differentiation, ultimately leading to NSPC pool depletion. Our results disclose an important role for YME1L in coordinating the switch between metabolic states of NSPCs and suggest that NSPC fate is regulated by compartmentalized changes in protein network dynamics.


Assuntos
Células-Tronco Adultas/metabolismo , Autorrenovação Celular , Metaloendopeptidases/metabolismo , Mitocôndrias/enzimologia , Células-Tronco Neurais/metabolismo , Células-Tronco Adultas/citologia , Animais , Proliferação de Células , Ciclo do Ácido Cítrico , Ácidos Graxos/metabolismo , Deleção de Genes , Metaloendopeptidases/deficiência , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/ultraestrutura , Células-Tronco Neurais/citologia , Nucleotídeos/metabolismo , Oxirredução , Proteólise , Proteoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA