Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nat Commun ; 13(1): 1421, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35302059

RESUMO

Gpr125 is an orphan G-protein coupled receptor, with homology to cell adhesion and axonal guidance factors, that is implicated in planar polarity and control of cell movements. By lineage tracing we demonstrate that Gpr125 is a highly specific marker of bipotent mammary stem cells in the embryo and of multiple long-lived unipotent basal mammary progenitors in perinatal and postnatal glands. Nipple-proximal Gpr125+ cells express a transcriptomic profile indicative of chemo-repulsion and cell movement, whereas Gpr125+ cells concentrated at invasive ductal tips display a hybrid epithelial-mesenchymal phenotype and are equipped to bind chemokine and growth factors and secrete a promigratory matrix. Gpr125 progenitors acquire bipotency in the context of transplantation and cancer and are greatly expanded and massed at the pushing margins of short latency MMTV-Wnt1 tumors. High Gpr125 expression identifies patients with particularly poor outcome within the basal breast cancer subtype highlighting its potential utility as a factor to stratify risk.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Experimentais , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Movimento Celular , Feminino , Humanos , Glândulas Mamárias Animais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Células-Tronco/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-27186076

RESUMO

INTRODUCTION: Cannabinoid compounds, both nonspecific as well as agonists selective for either cannabinoid receptor 1 (CB1) or cannabinoid receptor 2 (CB2), have been shown to modulate the tumor microenvironment by inducing apoptosis in tumor cells in several model systems. The mechanism of this modulation remains only partially delineated, and activity induced via the CB1 and CB2 receptors may be distinct despite significant sequence homology and structural similarity of ligands. METHODS: The CB2-selective agonist JWH-015 was used to investigate mechanisms downstream of CB2 activation in mouse and human breast cancer cell lines in vitro and in a murine mammary tumor model. RESULTS: JWH-015 treatment significantly reduced primary tumor burden and metastasis of luciferase-tagged murine mammary carcinoma 4T1 cells in immunocompetent mice in vivo. Furthermore, JWH-015 reduced the viability of murine 4T1 and human MCF7 mammary carcinoma cells in vitro by inducing apoptosis. JWH-015-mediated reduction of breast cancer cell viability was not dependent on Gαi signaling in vitro or modified by classical pharmacological blockade of CB1, GPR55, TRPV1, or TRPA1 receptors. JWH-015 effects were calcium dependent and induced changes in MAPK/ERK signaling. CONCLUSION: The results of this work characterize the actions of a CB2-selective agonist on breast cancer cells in a syngeneic murine model representing how a clinical presentation of cancer progression and metastasis may be significantly modulated by a G-protein-coupled receptor.

3.
PLoS One ; 8(11): e79845, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24260306

RESUMO

Gli3 is a transcriptional regulator of Hedgehog (Hh) signaling that functions as a repressor (Gli3(R)) or activator (Gli3(A)) depending upon cellular context. Previously, we have shown that Gli3(R) is required for the formation of mammary placodes #3 and #5. Here, we report that this early loss of Gli3 results in abnormal patterning of two critical regulators: Bmp4 and Tbx3, within the presumptive mammary rudiment (MR) #3 zone. We also show that Gli3 loss leads to failure to maintain mammary mesenchyme specification and loss of epithelial Wnt signaling, which impairs the later development of remaining MRs: MR#2 showed profound evagination and ectopic hairs formed within the presumptive areola; MR#4 showed mild invagination defects and males showed inappropriate retention of mammary buds in Gli3(xt/xt) mice. Importantly, mice genetically manipulated to misactivate Hh signaling displayed the same phenotypic spectrum demonstrating that the repressor function of Gli3(R) is essential during multiple stages of mammary development. In contrast, positive Hh signaling occurs during nipple development in a mesenchymal cuff around the lactiferous duct and in muscle cells of the nipple sphincter. Collectively, these data show that repression of Hh signaling by Gli3(R) is critical for early placodal patterning and later mammary mesenchyme specification whereas positive Hh signaling occurs during nipple development.


Assuntos
Desenvolvimento Embrionário/fisiologia , Fatores de Transcrição Kruppel-Like/metabolismo , Mamilos/embriologia , Animais , Proteína Morfogenética Óssea 4/metabolismo , Folículo Piloso/embriologia , Folículo Piloso/metabolismo , Masculino , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos , Mamilos/metabolismo , Transdução de Sinais/fisiologia , Proteínas com Domínio T/metabolismo , Proteína GLI1 em Dedos de Zinco
4.
Breast Cancer Res ; 15(6): R111, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24262428

RESUMO

INTRODUCTION: Latent TGFß binding proteins (LTBPs) govern TGFß presentation and activation and are important for elastogenesis. Although TGFß is well-known as a tumor suppressor and metastasis promoter, and LTBP1 is elevated in two distinct breast cancer metastasis signatures, LTBPs have not been studied in the normal mammary gland. METHODS: To address this we have examined Ltbp1 promoter activity throughout mammary development using an Ltbp1L-LacZ reporter as well as expression of both Ltbp1L and 1S mRNA and protein by qRT-PCR, immunofluorescence and flow cytometry. RESULTS: Our data show that Ltbp1L is transcribed coincident with lumen formation, providing a rare marker distinguishing ductal from alveolar luminal lineages. Ltbp1L and Ltbp1S are silent during lactation but robustly induced during involution, peaking at the stage when the remodeling process becomes irreversible. Ltbp1L is also induced within the embryonic mammary mesenchyme and maintained within nipple smooth muscle cells and myofibroblasts. Ltbp1 protein exclusively ensheaths ducts and side branches. CONCLUSIONS: These data show Ltbp1 is transcriptionally regulated in a dynamic manner that is likely to impose significant spatial restriction on TGFß bioavailability during mammary development. We hypothesize that Ltbp1 functions in a mechanosensory capacity to establish and maintain ductal luminal cell fate, support and detect ductal distension, trigger irreversible involution, and facilitate nipple sphincter function.


Assuntos
Proteínas de Ligação a TGF-beta Latente/metabolismo , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/embriologia , Mesoderma/citologia , Animais , Linhagem da Célula , Movimento Celular , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Lactação , Proteínas de Ligação a TGF-beta Latente/genética , Glândulas Mamárias Animais/fisiologia , Mesoderma/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Músculo Liso/citologia , Músculo Liso/embriologia , Gravidez , Regiões Promotoras Genéticas , Regulação para Cima
5.
J Bone Miner Res ; 28(1): 92-107, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22903605

RESUMO

Most commonly originating from breast malignancies, metastatic bone cancer causes bone destruction and severe pain. Although novel chemotherapeutic agents have increased life expectancy, patients are experiencing higher incidences of fracture, pain, and drug-induced side effects; furthermore, recent findings suggest that patients are severely undertreated for their cancer pain. Strong analgesics, namely opiates, are first-line therapy in alleviating cancer-related pain despite the severe side effects, including enhanced bone destruction with sustained administration. Bone resorption is primarily treated with bisphosphonates, which are associated with highly undesirable side effects, including nephrotoxicity and osteonecrosis of the jaw. In contrast, cannabinoid receptor 2 (CB(2) ) receptor-specific agonists have been shown to reduce bone loss and stimulate bone formation in a model of osteoporosis. CB(2) agonists produce analgesia in both inflammatory and neuropathic pain models. Notably, mixed CB(1) /CB(2) agonists also demonstrate a reduction in ErbB2-driven breast cancer progression. Here we demonstrate for the first time that CB(2) agonists reduce breast cancer-induced bone pain, bone loss, and breast cancer proliferation via cytokine/chemokine suppression. Studies used the spontaneously-occurring murine mammary cell line (66.1) implanted into the femur intramedullary space; measurements of spontaneous pain, bone loss, and cancer proliferation were made. The systemic administration of a CB(2) agonist, JWH015, for 7 days significantly attenuated bone remodeling, assuaged spontaneous pain, and decreased primary tumor burden. CB(2) -mediated effects in vivo were reversed by concurrent treatment with a CB(2) antagonist/inverse agonist but not with a CB(1) antagonist/inverse agonist. In vitro, JWH015 reduced cancer cell proliferation and inflammatory mediators that have been shown to promote pain, bone loss, and proliferation. Taken together, these results suggest CB(2) agonists as a novel treatment for breast cancer-induced bone pain, in which disease modifications include a reduction in bone loss, suppression of cancer growth, attenuation of severe bone pain, and increased survival without the major side effects of current therapeutic options.


Assuntos
Remodelação Óssea/efeitos dos fármacos , Agonistas de Receptores de Canabinoides/farmacologia , Neoplasias Mamárias Animais/patologia , Neoplasias Mamárias Animais/fisiopatologia , Receptor CB2 de Canabinoide/agonistas , Animais , Peso Corporal/efeitos dos fármacos , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/etiologia , Reabsorção Óssea/patologia , Reabsorção Óssea/fisiopatologia , Agonistas de Receptores de Canabinoides/administração & dosagem , Agonistas de Receptores de Canabinoides/uso terapêutico , Canabinoides/administração & dosagem , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Feminino , Fêmur/diagnóstico por imagem , Fêmur/efeitos dos fármacos , Fêmur/patologia , Fêmur/fisiopatologia , Fraturas Ósseas/tratamento farmacológico , Fraturas Ósseas/etiologia , Fraturas Ósseas/patologia , Fraturas Ósseas/fisiopatologia , Indóis/administração & dosagem , Indóis/farmacologia , Indóis/uso terapêutico , Neoplasias Mamárias Animais/complicações , Camundongos , Camundongos Endogâmicos BALB C , Dor/tratamento farmacológico , Dor/etiologia , Dor/fisiopatologia , Radiografia , Receptor CB2 de Canabinoide/metabolismo , Análise de Sobrevida
6.
Cancer Biol Ther ; 13(3): 175-83, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22353936

RESUMO

PURPOSE: Expression of the PGE2 receptor, EP4, is up-regulated during colorectal carcinogenesis. However the mechanism leading to deregulation of the EP4 receptor is not known. The present study was conducted to investigate the regulation of EP4 receptor by miRNAs. EXPERIMENTAL DESIGN: We analyzed 26 colon cancers (i.e. 15 adenocarcinomas and 9 adenomas) and 16 normal colon specimens for EP4 receptor expression by immunohistochemistry. A bioinformatics approached identified putative microRNA binding sites with the 3'-UTR of the EP4 receptor. Both colon cancer cell lines and tumor specimens were analyzed for miR-101 and EP4 expression by qRT-PCR and Western analysis respectively and simultaneously in situ hybridizations was used to confirm our results. In vitro and in vivo assays were used to confirm our clinical findings. RESULTS: We observed an inverse correlation between the levels of miR-101 and EP4 receptor protein. Transfection of LS174T cells with miR-101 significantly suppressed a luciferase reporter containing the EP4 receptor-3'-UTR. In contrast, a mutant EP4 receptor-3'-UTR construct was unaffected. Ectopic expression of miR-101 markedly reduced cell proliferation and motility. Co-transfection of EP4 receptor could rescue colon cancer cells from the tumor suppressive effects of miR-101. Moreover, the pharmacologic inhibition of EP4 receptor signaling or silencing of EP4 receptor phenocopied the effect of miR-101. This is the first study to show that the EP4 receptor is negatively regulated by miR-101. CONCLUSIONS: These data provide new insights in the modulation of EP-4 receptor expression at the post-transcriptional level by miR-101 and suggests therapeutic strategies against miR-101 targets may be warranted.


Assuntos
Adenocarcinoma/metabolismo , Adenoma/metabolismo , Neoplasias do Colo/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/fisiologia , Interferência de RNA , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Regiões 3' não Traduzidas , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenoma/genética , Adenoma/patologia , Sequência de Bases , Estudos de Casos e Controles , Linhagem Celular Tumoral , Movimento Celular , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Genes Reporter , Humanos , Luciferases de Renilla/biossíntese , Luciferases de Renilla/genética , MicroRNAs/metabolismo , Receptores de Prostaglandina E Subtipo EP2/genética , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Receptores de Prostaglandina E Subtipo EP4/genética
7.
Mol Pain ; 7: 81, 2011 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-22014040

RESUMO

BACKGROUND: Mechanisms driving cancer-induced bone pain are poorly understood. A central factor implicated to be a key player in the process of tumorigenesis, osteoclastogenesis and nociception is p38 MAPK. We determined the role of p38 MAPK in a mouse model of breast cancer induced bone pain in which mixed osteolytic and osteoblastic remodeling occurs. RESULTS: In cancer-treated mice, acute as well as chronic inhibition of p38 MAPK with SB203580 blocked flinching and guarding behaviors in a dose-dependent manner whereas no effect on thresholds to tactile stimuli was observed. Radiographic analyses of bones demonstrated that chronic inhibition of p38 MAPK reduced bone loss and incidence of spontaneous fracture in cancer-treated mice. Histological analysis of bones collected from mice treated with the p38 MAPK inhibitor showed complete absence of osteoblastic growth in the intramedullary space as well as significantly reduced tumor burden. CONCLUSIONS: Blockade of non-evoked pain behaviors but not hypersensitivity suggests differences in the underlying mechanisms of specific components of the pain syndrome and a possibility to individualize aspects of pain management. While it is not known whether the role of p38 MAPK signaling can be expanded to other cancers, the data suggest a need for understanding molecular mechanisms and cellular events that initiate and maintain cancer-induced bone pain for effective management for both ongoing pain as well as breakthrough pain.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Imidazóis/uso terapêutico , Piridinas/uso terapêutico , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Remodelação Óssea/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Fêmur/patologia , Camundongos , Manejo da Dor , Transdução de Sinais/efeitos dos fármacos
8.
J Mammary Gland Biol Neoplasia ; 16(2): 67-80, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21494784

RESUMO

Latent Transforming Growth Factor beta (TGFß) Binding Proteins (LTBPs) are chaperones and determinants of TGFß isoform-specific secretion. They belong to the LTBP/Fibrillin family and form integral components of the fibronectin and microfibrillar extracellular matrix (ECM). LTBPs serve as master regulators of TGFß bioavailability, functioning to incorporate and spatially pattern latent TGFß at regular intervals within the ECM, and actively participate in integrin-mediated stretch activation of TGFß in vivo. In so doing they create a highly patterned sensory system where local changes in ECM tension can be detected and transduced into focal signals. The physiological role of LTBPs in the mammary gland remains largely unstudied, however both loss and gain of LTBP expression is found in breast cancers and breast cancer cell lines. Importantly, elevated LTBP1 levels appear in two gene signatures predictive of enhanced metastatic behavior. LTBP may promote metastasis by providing the bridge between structural and signaling components of the epithelial to mesenchymal transition (EMT).


Assuntos
Neoplasias da Mama/patologia , Proteínas de Ligação a TGF-beta Latente/metabolismo , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Humanas/metabolismo , Neoplasias Mamárias Experimentais/patologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Feminino , Humanos , Proteínas de Ligação a TGF-beta Latente/genética , Glândulas Mamárias Animais/fisiologia , Glândulas Mamárias Humanas/fisiologia , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Metástase Neoplásica , Transdução de Sinais
9.
Invest New Drugs ; 29(1): 87-97, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19816657

RESUMO

Estrogen receptor (ER)-negative breast cancer is an aggressive form that currently requires more drug treatment options. Thus, we have further modified cyclohexanone derivatives of curcumin and examined them for cytotoxicity towards ER-negative human breast cancer cells. Two of the analogs screened elicited increased cytotoxic potency compared to curcumin and other previously studied derivatives. Specifically, 2,6-bis(pyridin-3-ylmethylene)-cyclohexanone (RL90) and 2,6-bis(pyridin-4-ylmethylene)-cyclohexanone (RL91) elicited EC(50) values of 1.54 and 1.10 µM, respectively, in MDA-MB-231 cells and EC(50) values of 0.51 and 0.23 in SKBr3 cells. All other new compounds examined were less potent than curcumin, which elicited EC(50) values of 7.6 and 2.4 µM in MDA-MB-231 and SKBr3 cells, respectively. Mechanistic analyses demonstrated that RL90 and RL91 significantly induced G(2)/M-phase cell cycle arrest and apoptosis. RL90 and RL91 also modulated the expression of key cell signaling proteins, specifically, in SKBr3 cells, protein levels of Her-2, Akt, and NFκB were decreased in a time-dependent manner, while activity of stress kinases JNK1/2 and P38 MAPK were increased. Signaling events in MDA-MB-231 cells were differently implicated, as EGFR protein levels were decreased and activity of GSK-3ß transiently decreased, while ß-catenin protein level and activity of P38 MAPK, Akt, and JNK1/2 were transiently increased. In conclusion replacement of the phenyl group of cyclohexanone derived curcumin derivatives with heterocyclic rings forms a class of second-generation analogs that are more potent than both curcumin and other derivatives. These new derivatives provide a platform for the further development of drugs for the treatment of ER-negative breast cancer.


Assuntos
Neoplasias da Mama/patologia , Curcumina/análogos & derivados , Curcumina/farmacologia , Cicloexanonas/farmacologia , Compostos Heterocíclicos/farmacologia , Receptores de Estrogênio/metabolismo , Morte Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Curcumina/química , Cicloexanonas/química , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Fase G2/efeitos dos fármacos , Compostos Heterocíclicos/química , Humanos , Proteínas de Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos
10.
Breast Cancer Res ; 12(6): 213, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21067528

RESUMO

ß-Catenin plays important roles in mammary development and tumorigenesis through its functions in cell adhesion, signal transduction and regulation of cell-context-specific gene expression. Studies in mice have highlighted the critical role of ß-catenin signaling for stem cell biology at multiple stages of mammary development. Deregulated ß-catenin signaling disturbs stem and progenitor cell dynamics and induces mammary tumors in mice. Recent data showing deregulated ß-catenin signaling in metaplastic and basal-type tumors suggest a similar link to reactivated developmental pathways and human breast cancer. The present review will discuss ß-catenin as a central transducer of numerous signaling pathways and its role in mammary development and breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Humanas/metabolismo , Neoplasias Mamárias Animais/metabolismo , Células-Tronco/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Adesão Celular , Feminino , Expressão Gênica , Humanos , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/patologia , Glândulas Mamárias Humanas/crescimento & desenvolvimento , Glândulas Mamárias Humanas/patologia , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/patologia , Camundongos , Camundongos Transgênicos , Transdução de Sinais , Proteínas Wnt/metabolismo
11.
Cancer Biol Ther ; 10(10): 1056-66, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20890108

RESUMO

BACKGROUND: Prostaglandin E2 (PGE2) levels are frequently elevated in colorectal carcinomas. PGE2 is perceived via four transmembrane G protein coupled receptors (EP1-4), among which the EP4 receptor is most relevant. PGE2/EP4-receptor interaction activates CREB via the ERK/MEK pathway. However, the downstream target genes activated by this pathway remained to be investigated. METHODOLOGY/PRINICIPAL FINDINGS: Here, we have identified S100P (an EF-hand calcium binding protein) as a novel downstream target. We show by realtime RT-PCR that S100P mRNA levels are elevated in 14/17 (82%) colon tumor tissues as compared to paired adjacent normal colonic tissues. S100P expression is stimulated in the presence of PGE2 in a time dependent manner at mRNA and protein levels in colon, breast and pancreatic cancer cells. Pharmacological and RNAi-mediated inhibition of the EP4 receptor attenuates PGE2-dependent S100P mRNA induction. RNA(i)-mediated knockdown of CREB inhibits endogenous S100P expression. Furthermore, using luciferase reporter analysis and EMSA we show that mutation and/or deletion of the CRE sequence within the S100P promoter abolished PGE2-mediated transcriptional induction. Finally, we demonstrate that RNA(i)-mediated knockdown of S100P compromised invadopodia formation, colony growth and motility of colon cancer cells. Interestingly, endogenous knock down of S100P decreases ERK expression levels, suggesting a role for ERK in regulating S100P mediated cell growth and motility. CONCLUSIONS/SIGNIFICANCE: Together, our findings show for the first time that S100P expression is regulated by PGE2/EP4-receptor signaling and may participate in a feedback signaling that perpetuates tumor cell growth and migration. Therefore, our data suggest that dysregulated S100P expression resulting from aberrant PGE2/EP4 receptor signaling may have important consequences relevant to colon cancer pathogenesis.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Neoplasias do Colo/metabolismo , Dinoprostona/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Transdução de Sinais , Western Blotting , Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Proteínas de Ligação ao Cálcio/genética , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Ensaio de Unidades Formadoras de Colônias , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Dinoprostona/genética , Ensaio de Desvio de Mobilidade Eletroforética , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mutagênese Sítio-Dirigida , Mutação/genética , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Receptores de Prostaglandina E Subtipo EP4/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
12.
Mol Carcinog ; 47(10): 806-13, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18381585

RESUMO

Aberrant regulation of the translation initiation is known to contribute to tumorigenesis. eIF3 plays an important role in translation initiation. eIF3f is the p47 subunit of the eIF3 complex whose function in cancer is not clear. Initial studies from our group indicated that eIF3f expression is decreased in melanoma. Overexpression of eIF3f inhibits translation and induces apoptosis in melanoma cells. The eIF3f gene is located at chromosome region 11p15.4. Loss of 11p15.4 is a common event in many tumors including melanoma. In order to investigate the molecular mechanism of the decreased expression of eIF3f in melanoma, we performed loss of heterozygosity (LOH) analysis in 24 melanoma specimens using three microsatellite markers encompassing the eIF3f gene. We showed that the prevalence of LOH ranged from 75% to 92% in melanoma. We also performed eIF3f gene copy number analysis using quantitative real-time PCR to further confirm the specific allelic loss of the eIF3f gene in melanoma. We demonstrated a statistically significant decrease of the eIF3f gene copy number in melanoma compared with normal tissues with a tumor/normal ratio of 0.52. To further elucidate the somatic genetic alterations, we carried out mutation analysis covering the entire coding region and 5'UTR of the eIF3f gene in melanoma tissues and cell lines. Despite some polymorphisms, we did not find any mutations. Furthermore, immunohistochemistry analysis demonstrated that eIF3f protein expression is decreased in melanoma compared to benign nevi. These data provide new insight into the understanding of the molecular pathogenesis of eIF3f during melanoma tumorigenesis.


Assuntos
Fator de Iniciação 3 em Eucariotos/genética , Melanoma/genética , Sequência de Bases , Mapeamento Cromossômico , Cromossomos Humanos Par 11 , Primers do DNA , Humanos , Imuno-Histoquímica , Perda de Heterozigosidade , Mutação , Reação em Cadeia da Polimerase
13.
Mol Genet Genomics ; 279(4): 371-83, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18219493

RESUMO

We report an in-depth characterization of two major stress proteins namely SUMO-conjugating enzyme (Sce) and peptidyl prolyl cis-trans isomerase (PPIase) in rice (Oryza sativa L.). Sce mediates addition of SUMO group to various cell proteins, through process referred to as SUMOylation. Rice nuclear genome has two putative genes encoding the Sce protein (OsSce1 and OsSce2). PCR-amplified full-length OsSce1 cDNA functionally complemented the growth defect in yeast cells lacking the equivalent Ubc9 protein (ScDeltaubc9). RT-PCR analysis showed that transcript levels of OsSce1 and OsSce2 in rice seedlings were regulated by temperature stress. OsSce1 protein was localized to the nucleus in onion epidermal cells as evidenced by the transient GFP expression analysis following micro-projectile gun-based shooting of an OsSce1-GFP fusion construct. PPIase proteins assist molecular chaperones in reactions associated with protein folding and protein transport across membrane. There are 23 putative genes encoding for FK506-binding proteins (FKBPs; specific class of PPIase) in rice genome. OsFKBP20 cDNA was isolated as a stress-inducible EST clone. Largest ORF of 561 bases in OsFKBP20 showed characteristic FK506-binding domain at N-terminus and a coiled-coil motif at C-terminus. RNA expression analysis indicated that OsFKBP20 transcript is heat-inducible. OsFKBP20 over-expression in yeast endowed capacity of high temperature tolerance to yeast cells. Yeast two-hybrid analysis showed that OsSce1 protein physically interacts with the OsFKBP20 protein. It is thus proposed that OsSce1 and OsFKBP20 proteins in concert mediate the stress response of rice plants.


Assuntos
Genes de Plantas , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Ligação a Tacrolimo/genética , Enzimas de Conjugação de Ubiquitina/genética , Sequência de Aminoácidos , Sequência de Bases , Primers do DNA/genética , DNA de Plantas/genética , Expressão Gênica , Perfilação da Expressão Gênica , Teste de Complementação Genética , Genoma de Planta , Temperatura Alta , Dados de Sequência Molecular , Oryza/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Processamento de Proteína Pós-Traducional , RNA de Plantas/genética , Homologia de Sequência de Aminoácidos , Proteínas de Ligação a Tacrolimo/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Enzimas de Conjugação de Ubiquitina/metabolismo
14.
Mol Carcinog ; 47(3): 235-44, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17918192

RESUMO

Aberrant regulation of the translation initiation is known to contribute to tumorigenesis. eIF3 plays an important role in translation initiation. eIF3f is the p47 subunit of the eIF3 complex whose function in cancer is not clear. Initial studies from our group indicated that eIF3f expression is decreased in pancreatic cancer. Overexpression of eIF3f induces apoptosis in pancreatic cancer cells. The eIF3f gene is located at chromosome band region 11p15.4. Loss of 11p15.4 is a common event in many tumors including pancreatic cancer. In order to investigate the molecular mechanism of the decreased expression of eIF3f in pancreatic cancer, we performed loss of heterozygosity (LOH) analysis in 32 pancreatic cancer specimens using three microsatellite markers encompassing the eIF3f gene. We showed that the prevalence of LOH ranged from 71% to 93%. We also performed eIF3f gene copy number analysis using quantitative real time PCR to further confirm the specific allelic loss of eIF3f gene in pancreatic cancer. We demonstrated a statistically significant decrease of eIF3f gene copy number in pancreatic tumors compared with normal tissues with a tumor/normal ratio of 0.24. Furthermore, RNA in situ hybridization and tissue microarray immunohistochemistry analysis demonstrated that eIF3f expression is significantly decreased in human pancreatic adenocarcinoma tissues compared to normal pancreatic tissues. These data provides new insight into the understanding of the molecular pathogenesis of eIF3f during pancreatic tumorigenesis.


Assuntos
Fator de Iniciação 3 em Eucariotos/metabolismo , Perda de Heterozigosidade , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Estudos de Casos e Controles , Linhagem Celular Tumoral , DNA/genética , DNA/isolamento & purificação , Fator de Iniciação 3 em Eucariotos/genética , Dosagem de Genes , Marcadores Genéticos , Humanos , Imuno-Histoquímica , Hibridização In Situ , Lasers , Masculino , Microdissecção , Repetições de Microssatélites , Metástase Neoplásica/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias da Próstata/metabolismo , RNA Mensageiro/metabolismo , Estatística como Assunto
15.
Carcinogenesis ; 28(9): 2028-35, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17389615

RESUMO

The Cdc2L gene encodes for the cyclin-dependent kinase 11 (CDK11) protein. Loss of one allele of Cdc2L and reduced CDK11 expression has been observed in several cancers, implicating its association with carcinogenesis. To directly investigate the role of CDK11 in carcinogenesis, we first generated cdc2l haploinsufficient mice by gene trap technology and then studied the susceptibility of these gene-trapped (cdc2l(GT)) mice to chemical-mediated skin carcinogenesis in the 7,12-dimethylbenz[a]anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA)-induced two-stage skin carcinogenesis model. Wild-type and cdc2l(GT) mice were subjected to a single topical application of initiation by DMBA and promotion twice a week for 19 weeks with TPA. At 19 weeks, 70% of the cdc2l(GT) mice and 60% of the cdc2l+/+ mice developed benign papillomas. However, there was an overall 3-fold increase in the average number of tumors per mouse observed in cdc2l(GT) mice as compared with cdc2l+/+ mice. There was also an increased frequency of larger papillomas in cdc2l(GT) mice. By using the polymerase chain reaction-restriction fragment length polymorphism assay, we found A to T transversion mutations at the 61st codon of H-ras gene in the papilloma tissue of both cdc2l(GT) mice and cdc2l+/+ mice. Ki-67 staining revealed increased proliferation in the papillomas of cdc2l(GT) (77.75%) as compared with cdc2l+/+ (30.84%) tumors. These studies are the first to show that loss of one allele of cdc2l gene, encoding CDK11, facilitates DMBA/TPA-induced skin carcinogenesis in vivo.


Assuntos
DNA Helicases/deficiência , DNA Helicases/genética , Neoplasias Cutâneas/genética , 9,10-Dimetil-1,2-benzantraceno/toxicidade , Animais , Carcinógenos/toxicidade , Códon , Cruzamentos Genéticos , Feminino , Genes ras , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Componente 4 do Complexo de Manutenção de Minicromossomo , Papiloma/induzido quimicamente , Papiloma/genética , Polimorfismo de Fragmento de Restrição , Neoplasias Cutâneas/induzido quimicamente , Acetato de Tetradecanoilforbol/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...