Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554393

RESUMO

Diabetic neuropathy is a debilitating disorder characterized by spontaneous and mechanical allodynia. The role of skin mechanoreceptors in the development of mechanical allodynia is unclear. We discovered that mice with diabetic neuropathy had decreased sirtuin 1 (SIRT1) deacetylase activity in foot skin, leading to reduced expression of brain-derived neurotrophic factor (BDNF) and subsequent loss of innervation in Meissner corpuscles, a mechanoreceptor expressing the BDNF receptor TrkB. When SIRT1 was depleted from skin, the mechanical allodynia worsened in diabetic neuropathy mice, likely due to retrograde degeneration of the Meissner-corpuscle innervating Aß axons and aberrant formation of Meissner corpuscles which may have increased the mechanosensitivity. The same phenomenon was also noted in skin-keratinocyte specific BDNF knockout mice. Furthermore, overexpression of SIRT1 in skin induced Meissner corpuscle reinnervation and regeneration, resulting in significant improvement of diabetic mechanical allodynia. Overall, the findings suggested that skin-derived SIRT1 and BDNF function in the same pathway in skin sensory apparatus regeneration and highlighted the potential of developing topical SIRT1-activating compounds as a novel treatment for diabetic mechanical allodynia.

2.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38256175

RESUMO

Abnormal NAD+ signaling has been implicated in axonal degeneration in diabetic peripheral neuropathy (DPN). We hypothesized that supplementing NAD+ precursors could alleviate DPN symptoms through increasing the NAD+ levels and activating the sirtuin-1 (SIRT1) protein. To test this, we exposed cultured Dorsal Root Ganglion neurons (DRGs) to Nicotinamide Riboside (NR) or Nicotinamide Mononucleotide (NMN), which increased the levels of NAD+, the SIRT1 protein, and the deacetylation activity that is associated with increased neurite growth. A SIRT1 inhibitor blocked the neurite growth induced via NR or NMN. We then induced neuropathy in C57BL6 mice with streptozotocin (STZ) or a high fat diet (HFD) and administered NR or NMN for two months. Both the STZ and HFD mice developed neuropathy, which was reversed through the NR or NMN administration: sensory function improved, nerve conduction velocities normalized, and intraepidermal nerve fibers were restored. The NAD+ levels and SIRT1 activity were reduced in the DRGs from diabetic mice but were preserved with the NR or NMN treatment. We also tested the effect of NR or NMN administration in mice that overexpress the SIRT1 protein in neurons (nSIRT1 OE) and found no additional benefit from the addition of the drug. These findings suggest that supplementing with NAD+ precursors or activating SIRT1 may be a promising treatment for DPN.


Assuntos
Diabetes Mellitus Experimental , Neuropatias Diabéticas , Animais , Camundongos , Neuropatias Diabéticas/tratamento farmacológico , NAD , Diabetes Mellitus Experimental/complicações , Sirtuína 1 , Camundongos Endogâmicos C57BL , Nucleotídeos , Estreptozocina
3.
bioRxiv ; 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36747753

RESUMO

Diabetic neuropathy is a debilitating disorder characterized by spontaneous and mechanical pain. The role of skin mechanoreceptors in the development of mechanical pain (allodynia) is unclear. We discovered that mice with diabetic neuropathy had decreased sirtuin 1 (SIRT1) deacetylase activity in foot skin, leading to reduced expression of brain-derived neurotrophic factor (BDNF) and subsequent loss of innervation in Meissner corpuscles, a mechanoreceptor expressing the BDNF receptor TrkB. When SIRT1 was depleted from skin, the mechanical allodynia worsened in diabetic neuropathy mice, likely due to retrograde degeneration of the Meissner-corpuscle innervating Aß axons and aberrant formation of Meissner corpuscles which may have increased the mechanosensitivity. The same phenomenon was also noted in skin BDNF knockout mice. Furthermore, overexpression of SIRT1 in skin induced Meissner corpuscle reinnervation and regeneration, resulting in significant improvement of diabetic mechanical allodynia. Overall, the findings suggested that skin-derived SIRT1 and BDNF function in the same pathway in skin sensory apparatus regeneration and highlighted the potential of developing topical SIRT1-activating compounds as a novel treatment for diabetic mechanical allodynia.

4.
Int J Mol Sci ; 23(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35563288

RESUMO

Axon degeneration in diabetic peripheral neuropathy (DPN) is associated with impaired NAD+ metabolism. We tested whether the administration of NAD+ precursors, nicotinamide mononucleotide (NMN) or nicotinamide riboside (NR), prevents DPN in models of Type 1 and Type 2 diabetes. NMN was administered to streptozotocin (STZ)-induced diabetic rats and STZ-induced diabetic mice by intraperitoneal injection at 50 or 100 mg/kg on alternate days for 2 months. mice The were fed with a high fat diet (HFD) for 2 months with or without added NR at 150 or 300 mg/kg for 2 months. The administration of NMN to STZ-induced diabetic rats or mice or dietary addition of NR to HFD-fed mice improved sensory function, normalized sciatic and tail nerve conduction velocities, and prevented loss of intraepidermal nerve fibers in skin samples from the hind-paw. In adult dorsal root ganglion (DRG) neurons isolated from HFD-fed mice, there was a decrease in NAD+ levels and mitochondrial maximum reserve capacity. These impairments were normalized in isolated DRG neurons from NR-treated mice. The results indicate that the correction of NAD+ depletion in DRG may be sufficient to prevent DPN but does not significantly affect glucose tolerance, insulin levels, or insulin resistance.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Neuropatias Diabéticas , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Neuropatias Diabéticas/etiologia , Neuropatias Diabéticas/metabolismo , Neuropatias Diabéticas/prevenção & controle , Camundongos , Mitocôndrias/metabolismo , NAD/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo , Ratos
5.
Int J Mol Sci ; 21(11)2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32466541

RESUMO

Diabetes predisposes to cognitive decline leading to dementia and is associated with decreased brain NAD+ levels. This has triggered an intense interest in boosting nicotinamide adenine dinucleotide (NAD+) levels to prevent dementia. We tested if the administration of the precursor of NAD+, nicotinamide mononucleotide (NMN), can prevent diabetes-induced memory deficits. Diabetes was induced in Sprague-Dawley rats by the administration of streptozotocin (STZ). After 3 months of diabetes, hippocampal NAD+ levels were decreased (p = 0.011). In vivo localized high-resolution proton magnetic resonance spectroscopy (MRS) of the hippocampus showed an increase in the levels of glucose (p < 0.001), glutamate (p < 0.001), gamma aminobutyric acid (p = 0.018), myo-inositol (p = 0.018), and taurine (p < 0.001) and decreased levels of N-acetyl aspartate (p = 0.002) and glutathione (p < 0.001). There was a significant decrease in hippocampal CA1 neuronal volume (p < 0.001) and neuronal number (p < 0.001) in the Diabetic rats. Diabetic rats showed hippocampal related memory deficits. Intraperitoneal NMN (100 mg/kg) was given after induction and confirmation of diabetes and was provided on alternate days for 3 months. NMN increased brain NAD+ levels, normalized the levels of glutamate, taurine, N-acetyl aspartate (NAA), and glutathione. NMN-treatment prevented the loss of CA1 neurons and rescued the memory deficits despite having no significant effect on hyperglycemic or lipidemic control. In hippocampal protein extracts from Diabetic rats, SIRT1 and PGC-1α protein levels were decreased, and acetylation of proteins increased. NMN treatment prevented the diabetes-induced decrease in both SIRT1 and PGC-1α and promoted deacetylation of proteins. Our results indicate that NMN increased brain NAD+, activated the SIRT1 pathway, preserved mitochondrial oxidative phosphorylation (OXPHOS) function, prevented neuronal loss, and preserved cognition in Diabetic rats.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Complicações do Diabetes/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Mononucleotídeo de Nicotinamida/uso terapêutico , Animais , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Disfunção Cognitiva/prevenção & controle , Complicações do Diabetes/prevenção & controle , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Injeções Intraperitoneais , Masculino , Memória , NAD/metabolismo , Ubiquitina-Proteína Ligases Nedd4/genética , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Mononucleotídeo de Nicotinamida/administração & dosagem , Mononucleotídeo de Nicotinamida/farmacologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ratos , Ratos Sprague-Dawley , Sirtuína 1/genética , Sirtuína 1/metabolismo , Taurina/metabolismo , Ácido gama-Aminobutírico/metabolismo
6.
Brain ; 142(12): 3737-3752, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31754701

RESUMO

In diabetic neuropathy, there is activation of axonal and sensory neuronal degeneration pathways leading to distal axonopathy. The nicotinamide-adenine dinucleotide (NAD+)-dependent deacetylase enzyme, Sirtuin 1 (SIRT1), can prevent activation of these pathways and promote axonal regeneration. In this study, we tested whether increased expression of SIRT1 protein in sensory neurons prevents and reverses experimental diabetic neuropathy induced by a high fat diet (HFD). We generated a transgenic mouse that is inducible and overexpresses SIRT1 protein in neurons (nSIRT1OE Tg). Higher levels of SIRT1 protein were localized to cortical and hippocampal neuronal nuclei in the brain and in nuclei and cytoplasm of small to medium sized neurons in dorsal root ganglia. Wild-type and nSIRT1OE Tg mice were fed with either control diet (6.2% fat) or a HFD (36% fat) for 2 months. HFD-fed wild-type mice developed neuropathy as determined by abnormal motor and sensory nerve conduction velocity, mechanical allodynia, and loss of intraepidermal nerve fibres. In contrast, nSIRT1OE prevented a HFD-induced neuropathy despite the animals remaining hyperglycaemic. To test if nSIRT1OE would reverse HFD-induced neuropathy, nSIRT1OE was activated after mice developed peripheral neuropathy on a HFD. Two months after nSIRT1OE, we observed reversal of neuropathy and an increase in intraepidermal nerve fibre. Cultured adult dorsal root ganglion neurons from nSIRT1OE mice, maintained at high (30 mM) total glucose, showed higher basal and maximal respiratory capacity when compared to adult dorsal root ganglion neurons from wild-type mice. In dorsal root ganglion protein extracts from nSIRT1OE mice, the NAD+-consuming enzyme PARP1 was deactivated and the major deacetylated protein was identified to be an E3 protein ligase, NEDD4-1, a protein required for axonal growth, regeneration and proteostasis in neurodegenerative diseases. Our results indicate that nSIRT1OE prevents and reverses neuropathy. Increased mitochondrial respiratory capacity and NEDD4 activation was associated with increased axonal growth driven by neuronal overexpression of SIRT1. Therapies that regulate NAD+ and thereby target sirtuins may be beneficial in human diabetic sensory polyneuropathy.


Assuntos
Córtex Cerebral/metabolismo , Neuropatias Diabéticas/prevenção & controle , Neurônios/metabolismo , Sirtuína 1/genética , Animais , Glicemia/metabolismo , Neuropatias Diabéticas/etiologia , Neuropatias Diabéticas/genética , Neuropatias Diabéticas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Gânglios Espinais/metabolismo , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Ubiquitina-Proteína Ligases Nedd4/genética , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Células Receptoras Sensoriais/metabolismo , Sirtuína 1/metabolismo
7.
Int Rev Neurobiol ; 145: 177-209, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31208524

RESUMO

Survival of human peripheral nervous system neurons and associated distal axons is highly dependent on energy. Diabetes invokes a maladaptation in glucose and lipid energy metabolism in adult sensory neurons, axons and Schwann cells. Mitochondrial (Mt) dysfunction has been implicated as an etiological factor in failure of energy homeostasis that results in a low intrinsic aerobic capacity within the neuron. Over time, this energy failure can lead to neuronal and axonal degeneration and results in increased oxidative injury in the neuron and axon. One of the key pathways that is impaired in diabetic peripheral neuropathy (DPN) is the energy sensing pathway comprising the nicotinamide-adenine dinucleotide (NAD+)-dependent Sirtuin 1 (SIRT1)/peroxisome proliferator-activated receptor-γ coactivator α (PGC-1α)/Mt transcription factor A (TFAM or mtTFA) signaling pathway. Knockout of PGC-1α exacerbates DPN, whereas overexpression of human TFAM is protective. LY379268, a selective metabolomic glutamate receptor 2/3 (mGluR2/3) receptor agonist, also upregulates the SIRT1/PGC-1α/TFAM signaling pathway and prevents DPN through glutamate recycling in Schwann/satellite glial (SG) cells and by improving dorsal root ganglion (DRG) neuronal Mt function. Furthermore, administration of nicotinamide riboside (NR), a precursor of NAD+, prevents and reverses DPN, in part by increasing NAD+ levels and SIRT1 activity. In summary, we review the role of NAD+, mitochondria and the SIRT1-PGC-1α-TFAM pathway both from the perspective of pathogenesis and therapy in DPN.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Neuropatias Diabéticas/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , NAD/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Sirtuína 1/metabolismo , Fatores de Transcrição/metabolismo , Aminoácidos/efeitos dos fármacos , Aminoácidos/farmacologia , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , DNA Mitocondrial/metabolismo , Humanos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Transdução de Sinais
8.
J Neuroimmunol ; 304: 29-34, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-27474445

RESUMO

Neurodegeneration is an important determinant of disability in multiple sclerosis (MS) but while currently approved treatments reduce inflammation, they have not been shown to reduce neurodegeneration. SIRT1, a NAD dependent protein deacetylase, has been implicated in the pathogenesis of neurodegeneration in neurological diseases including MS. We have studied the role of SIRT1 in experimental autoimmune encephalomyelitis (EAE) and found evidence for a neuroprotective role. In this review we summarize the most recent findings from the use of SIRT1 activators and SIRT1 overexpression in transgenic mice. These data support provide a rational for the use of SIRT1 activators in MS.


Assuntos
Esclerose Múltipla/metabolismo , NAD/biossíntese , Sirtuína 1/biossíntese , Animais , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Humanos , Imunossupressores/uso terapêutico , Esclerose Múltipla/tratamento farmacológico
9.
Ann Clin Transl Neurol ; 4(12): 844-858, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29296613

RESUMO

Objectives: There is a critical need to develop effective treatments for diabetic neuropathy. This study determined if a selective mGluR2/3 receptor agonist prevented or treated experimental diabetic peripheral neuropathy (DPN) through glutamate recycling and improved mitochondrial function. Methods: Adult male streptozotocin treated Sprague-Dawley rats with features of type 1 diabetes mellitus (T1DM) or Low Capacity Running (LCR) rats with insulin resistance or glucose intolerance were treated with 3 or 10 mg/kg/day LY379268. Neuropathy end points included mechanical allodynia, nerve conduction velocities (NCV), and intraepidermal nerve fiber density (IENFD). Markers of oxidative stress, antioxidant response, glutamate recycling pathways, and mitochondrial oxidative phosphorylation (OXPHOS) associated proteins were measured in dorsal root ganglia (DRG). Results: In diabetic rats, NCV and IENFD were decreased. Diabetic rats treated with an mGluR2/3 agonist did not develop neuropathy despite remaining diabetic. Diabetic DRG showed increased levels of oxidized proteins, decreased levels of glutathione, decreased levels of mitochondrial DNA (mtDNA) and OXPHOS proteins. In addition, there was a 20-fold increase in levels of glial fibrillary acidic protein (GFAP) and the levels of glutamine synthetase and glutamate transporter proteins were decreased. When treated with a specific mGluR2/3 agonist, levels of glutathione, GFAP and oxidized proteins were normalized and levels of superoxide dismutase 2 (SOD2), SIRT1, PGC-1α, TFAM, glutamate transporter proteins, and glutamine synthetase were increased in DRG neurons. Interpretation: Activation of glutamate recycling pathways protects diabetic DRG and this is associated with activation of the SIRT1-PGC-1α-TFAM axis and preservation of mitochondrial OXPHOS function.

10.
Am J Physiol Endocrinol Metab ; 309(2): E132-41, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25944881

RESUMO

Oxidative stress-induced mitochondrial dysfunction and mitochondrial DNA (mtDNA) damage in peripheral neurons is considered to be important in the development of diabetic neuropathy. Mitochondrial transcription factor A (TFAM) wraps mtDNA and promotes mtDNA replication and transcription. We studied whether overexpression of TFAM reverses experimental peripheral diabetic neuropathy using TFAM transgenic mice (TFAM Tg) that express human TFAM (hTFAM). Levels of mouse mtDNA and the total TFAM (mouse TFAM + hTFAM) in the dorsal root ganglion (DRG) increased by approximately twofold in the TFAM Tg mice compared with control (WT) mice. WT and TFAM Tg mice were made diabetic by the administration of streptozotocin. Neuropathy end points were motor and sensory nerve conduction velocities, mechanical allodynia, thermal nociception, and intraepidermal nerve fiber density (IENFD). In the DRG neurons, mtDNA copy number and damage to mtDNA were quantified by qPCR, and TFAM levels were measured by Western blot. Mice with 16-wk duration of diabetes developed motor and sensory nerve conduction deficits, behavioral deficits, and intraepidermal nerve fiber loss. All of these changes were mostly prevented in diabetic TFAM Tg mice and were independent of changes in blood parameters. Mice with 16 wk of diabetes had a 40% decrease in mtDNA copy number compared with nondiabetic mice (P < 0.01). Importantly, the mtDNA copy number in diabetic TFAM Tg mice reached the same level as that of WT nondiabetic mice. In comparison, there was upregulation of mtDNA and TFAM in 6-wk diabetic mice, suggesting that TFAM activation could be a therapeutic strategy to treat peripheral neuropathy.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Neuropatias Diabéticas/genética , Neuropatias Diabéticas/metabolismo , Proteínas Mitocondriais/fisiologia , Mitofagia/genética , Fatores de Transcrição/fisiologia , Animais , Respiração Celular/genética , Células Cultivadas , DNA Mitocondrial/genética , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Neuropatias Diabéticas/patologia , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/fisiologia , Estreptozocina
11.
Mol Cell Biochem ; 403(1-2): 149-58, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25711401

RESUMO

Impairment of vision in diabetes has been suggested to be due to an acceleration of the polyol pathway in the lens as well as in the retina. This acceleration is attributed largely to the rate-limiting steps of glycolysis and consequent diversion of glucose in the polyol pathway with its consequent effects on diverse tissue transport and redox activities. In addition, high sugar also induces a generalized oxidative stress via generating superoxide and its derivatization to other reactive oxygen species (ROS). While the immediate toxicity of hyperglycemia could be linked to the acceleration of this pathway, we hypothesize that in the long term, the toxic effects of the high sugar level are due to an upregulation of certain microRNAs (as we have shown before) and consequent repression of the transcription and translation of many antioxidant and anti-apoptotic genes. Therefore, in the present study, we measured the expression levels of certain major antioxidant and pro- and anti-apoptotic mRNAs in the lenses of mice made hyperglycemic by feeding a high galactose diet, without or with fortification with 1% sodium pyruvate-a potent ROS scavenger. As speculated, the expression of several antioxidant and anti-apoptotic mRNAs has been found to be significantly repressed in the lenses of animals fed a high galactose diet. Such repression was significantly prevented by pyruvate. Thus, the findings also strongly suggest that visual impairment induced by the diabetic hyperglycemia could be treatable by administration of certain anti-microRNAs.


Assuntos
Antioxidantes/metabolismo , Apoptose/genética , Galactose/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Cristalino/metabolismo , Piruvatos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Dieta , Cristalino/efeitos dos fármacos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
12.
Ann Clin Transl Neurol ; 1(8): 589-604, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25356430

RESUMO

OBJECTIVES: Diabetes leads to cognitive impairment and is associated with age-related neurodegenerative diseases including Alzheimer's disease (AD). Thus, understanding diabetes-induced alterations in brain function is important for developing early interventions for neurodegeneration. Low-capacity runner (LCR) rats are obese and manifest metabolic risk factors resembling human "impaired glucose tolerance" or metabolic syndrome. We examined hippocampal function in aged LCR rats compared to their high-capacity runner (HCR) rat counterparts. METHODS: Hippocampal function was examined using proton magnetic resonance spectroscopy and imaging, unbiased stereology analysis, and a Y maze. Changes in the mitochondrial respiratory chain function and levels of hyperphosphorylated tau and mitochondrial transcriptional regulators were examined. RESULTS: The levels of glutamate, myo-inositol, taurine, and choline-containing compounds were significantly increased in the aged LCR rats. We observed a significant loss of hippocampal neurons and impaired cognitive function in aged LCR rats. Respiratory chain function and activity were significantly decreased in the aged LCR rats. Hyperphosphorylated tau was accumulated within mitochondria and peroxisome proliferator-activated receptor-gamma coactivator 1α, the NAD(+)-dependent protein deacetylase sirtuin 1, and mitochondrial transcription factor A were downregulated in the aged LCR rat hippocampus. INTERPRETATION: These data provide evidence of a neurodegenerative process in the hippocampus of aged LCR rats, consistent with those seen in aged-related dementing illnesses such as AD in humans. The metabolic and mitochondrial abnormalities observed in LCR rat hippocampus are similar to well-described mechanisms that lead to diabetic neuropathy and may provide an important link between cognitive and metabolic dysfunction.

13.
Neurobiol Dis ; 64: 118-30, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24423644

RESUMO

Mitochondrial degeneration is considered to play an important role in the development of diabetic peripheral neuropathy in humans. Mitochondrial degeneration and the corresponding protein regulation associated with the degeneration were studied in an animal model of diabetic neuropathy. PGC-1α and its-regulated transcription factors including TFAM and NRF1, which are master regulators of mitochondrial biogenesis, are significantly downregulated in streptozotocin diabetic dorsal root ganglion (DRG) neurons. Diabetic mice develop peripheral neuropathy, loss of mitochondria, decreased mitochondrial DNA content and increased protein oxidation. Importantly, this phenotype is exacerbated in PGC-1α (-/-) diabetic mice, which develop a more severe neuropathy with reduced mitochondrial DNA and a further increase in protein oxidation. PGC-1α (-/-) diabetic mice develop an increase in total cholesterol and triglycerides, and a decrease in TFAM and NRF1 protein levels. Loss of PGC-1α causes severe mitochondrial degeneration with vacuolization in DRG neurons, coupled with reduced state 3 and 4 respiration, reduced expression of oxidative stress response genes and an increase in protein oxidation. In contrast, overexpression of PGC-1α in cultured adult mouse neurons prevents oxidative stress associated with increased glucose levels. The study provides new insights into the role of PGC-1α in mitochondrial regeneration in peripheral neurons and suggests that therapeutic modulation of PGC-1α function may be an attractive approach for treatment of diabetic neuropathy.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Neuropatias Diabéticas/fisiopatologia , Mitocôndrias/fisiologia , Neurônios/fisiologia , Fatores de Transcrição/metabolismo , Animais , Células Cultivadas , Colesterol/sangue , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/metabolismo , Diabetes Mellitus Experimental/patologia , Neuropatias Diabéticas/patologia , Gânglios Espinais/patologia , Gânglios Espinais/fisiopatologia , Proteínas de Grupo de Alta Mobilidade/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/patologia , Neurônios/patologia , Fator 1 Nuclear Respiratório/metabolismo , Oxirredução , Estresse Oxidativo/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fatores de Transcrição/genética , Triglicerídeos/sangue , Vacúolos/patologia , Vacúolos/fisiologia
14.
Clin Ophthalmol ; 7: 2091-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24187484

RESUMO

PURPOSE: Sulforaphane is a phytochemically derived organic isothiocyanate 1-isothiocyanato-4-methylsulfinyl-butane present naturally in crucifers, including broccoli and cauliflower. Biochemically, it has been reported to induce the transcription of several antioxidant enzymes. Since such enzymes have been implicated in preventing cataract formation triggered by the intraocular generation of oxy-radical species, the purpose of this investigation was to examine whether it could induce the formation of antioxidant enzymes in the eye lens. Thioredoxin reductase (TrxR) was used as the target of such induction. METHODS: Mice lenses were cultured for an overnight period of 17 hours in medium 199 fortified with 10% fetal calf serum. Incubation was conducted in the absence and presence of sulforaphane (5 µM). Subsequently, the lenses were homogenized in phosphate-buffered saline (PBS), followed by centrifugation. TrxR activity was determined in the supernatant by measuring the nicotinamide adenine dinucleotide phosphate (reduced) (NADPH)-dependent reduction of 5,5'-dithiobis-2-nitrobenzoic acid (DTNB). Non-specific reduction of DTNB was corrected for by conducting parallel determinations in the presence of aurothiomalate. The reduction of DTNB was followed spectrophotometrically at 410 nm. RESULTS: The activity of TrxR in the lenses incubated with sulforaphane was found to be elevated to 18 times of that observed in lenses incubated without sulforaphane. It was also noticeably higher in the lenses incubated without sulforaphane than in the un-incubated fresh lenses. However, this increase was much lower than that observed for lenses incubated with sulforaphane. CONCLUSION: Sulforaphane has been found to enhance TrxR activity in the mouse lens in culture. In view of the protective effect of the antioxidant enzymes and certain nutrients against cataract formation, the findings suggest that it would, by virtue of its ability to enhance the activity of such enzymes, prevent the tissue against oxidative stress that leads to cataract formation. Additional studies with the activities of other antioxidant enzymes such as quinone oxidoreductase and the levels of Nrf2 are in progress.

15.
J Immunol ; 190(9): 4595-607, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23547115

RESUMO

Treatment of experimental autoimmune encephalomyelitis (EAE) with resveratrol, an activator of sirtuin 1 (SIRT1), reduces disease severity. This suggested that activators of SIRT1, a highly conserved NAD-dependent protein deacetylase, might have immune-modulating or neuroprotective therapeutic effects in EAE. Previously, we showed that SIRT1 expression increases in EAE, suggesting that it is an adaptive response. In this study, we investigated the potential function of SIRT1 in regulating EAE using SIRT1-overexpressing mice. The current studies examine potential neuroprotective and immunomodulatory effects of SIRT1 overexpression in chronic EAE induced by immunization of C57BL/6 mice with myelin oligodendrocyte glycoprotein peptide 35-55. SIRT1 suppressed EAE clinical symptoms compared with wild-type EAE mice and prevented or altered the phenotype of inflammation in spinal cords; as a result, demyelination and axonal injury were reduced. Significant neuroprotective effects were observed, with fewer apoptotic cells found in the spinal cords of SIRT1-overexpressing EAE mice associated with increased brain-derived neurotrophic factor and NAD levels. Earlier, we showed that brain-derived neurotrophic factor and NAD play crucial neuroprotective roles in EAE. These results suggest that SIRT1 reduces neuronal loss in this chronic demyelinating disease model and that this is associated with a reduction in inflammation.


Assuntos
Encefalomielite Autoimune Experimental/metabolismo , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Sirtuína 1/biossíntese , Animais , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Axônios/efeitos dos fármacos , Axônios/imunologia , Axônios/metabolismo , Fator Neurotrófico Derivado do Encéfalo/imunologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/imunologia , Doenças Desmielinizantes/metabolismo , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/prevenção & controle , Feminino , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Glicoproteína Mielina-Oligodendrócito/imunologia , NAD/imunologia , NAD/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/imunologia , Resveratrol , Sirtuína 1/imunologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/imunologia , Medula Espinal/metabolismo , Estilbenos/farmacologia
16.
J Neurosci Res ; 87(7): 1659-69, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19125416

RESUMO

Oxidative stress and inflammation appear to play a critical role in the progression of Parkinson's disease. As a result, there has been growing interest in antioxidant pathways and how these pathways might be exploited to slow the progressive loss of dopamine neurons. One such pathway that has garnered attention recently is mediated by the transcription factor Nrf2 and is integral in orchestrating cells' antiinflammatory defense. Nrf2 controls the inducible expression of numerous antioxidant and phase 2 detoxification genes, such as glutathione S-transferase, heme oxygenase-1, and NAD(P)H:quinone oxidoreductase 1 (NQO1). Once activated, these genes work synergistically to maintain intracellular redox homeostasis. In this study, we test the hypothesis that Nrf2 activation can protect dopaminergic neurons against 6-hydroxydopamine (6-OHDA)-induced toxicity. Treatment of organotypic nigrostriatal cocultures with either tert-butylhydroquinone (tBHQ) or sulforaphane, known activators of Nrf2, mitigated dopaminergic cell loss. The observed protection appeared to be mediated, at least in part, by an increase in antioxidant activity. Simultaneous treatment of cultures with tBHQ and 6-OHDA increased NQO1 expression 17-fold compared with controls. Overall, these results suggest that Nrf2 may play an important role in cellular protection in neurodegenerative diseases and may be a viable therapeutic target in the future.


Assuntos
Corpo Estriado/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Oxidopamina/toxicidade , Substância Negra/efeitos dos fármacos , Animais , Antioxidantes/química , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Morte Celular/efeitos dos fármacos , Técnicas de Cocultura , Corpo Estriado/fisiologia , Citoproteção/efeitos dos fármacos , Dopamina/metabolismo , Expressão Gênica/efeitos dos fármacos , Hidroquinonas/química , Hidroquinonas/farmacologia , Isotiocianatos , NAD(P)H Desidrogenase (Quinona)/metabolismo , Neurônios/fisiologia , Fármacos Neuroprotetores/química , Ratos , Ratos Sprague-Dawley , Substância Negra/fisiologia , Sulfóxidos , Tiocianatos/química , Tiocianatos/farmacologia
17.
Glia ; 57(6): 645-56, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18942756

RESUMO

Oxidative stress is an important molecular mechanism of astrocyte injury and death following ischemia/reperfusion and may be an effective target of intervention. One therapeutic strategy for detoxifying the many different reactive oxygen and nitrogen species that are produced under these conditions is induction of the Phase II gene response by the use of chemicals or conditions that promote the translocation of the transcriptional activating factor NRF2 from the cytosol to the nucleus, where it binds to genomic antioxidant response elements. This study tested the hypothesis that pre- or post-treatment of cultured cortical astrocytes with sulforaphane, an alkylating agent known to activate the NRF2 pathway of gene expression protects against death of astrocytes caused by transient exposure to O(2) and glucose deprivation (OGD). Rat cortical astrocytes were exposed to 5 muM sulforaphane either 48 h prior to, or for 48 h after a 4-h period of OGD. Both pre- and post-treatments significantly reduced cell death at 48 h after OGD. Immunostaining for 8-hydroxy-2-deoxyguanosine, a marker of DNA/RNA oxidation, was reduced at 4 h reoxygenation with sulforaphane pretreatment. Sulforaphane exposure was followed by an increase in cellular and nuclear NRF2 immunoreactivity. Moreover, sulforaphane also increased the mRNA, protein level, and enzyme activity of NAD(P)H/Quinone Oxidoreductase1, a known target of NRF2 transcriptional activation. We conclude that sulforaphane stimulates the NRF2 pathway of antioxidant gene expression in astrocytes and protects them from cell death in an in vitro model of ischemia/reperfusion.


Assuntos
Antioxidantes/farmacologia , Astrócitos/efeitos dos fármacos , Astrócitos/fisiologia , Hipóxia Celular , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Tiocianatos/farmacologia , 8-Hidroxi-2'-Desoxiguanosina , Animais , Morte Celular/efeitos dos fármacos , Células Cultivadas , Desoxiguanosina/análogos & derivados , Glucose/deficiência , Isotiocianatos , NAD(P)H Desidrogenase (Quinona) , NADP/metabolismo , NADPH Desidrogenase/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Quinona Redutases/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Sulfóxidos
18.
Electrophoresis ; 29(10): 2215-23, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18425750

RESUMO

By employing a capillary ITP (CITP)/CZE-based proteomic technology, a total of 1795 distinct mouse Swiss-Prot protein entries (or 1705 nonredundant proteins) are identified from synaptic mitochondria isolated from mouse brain. The ultrahigh resolving power of CITP/CZE is evidenced by the large number of distinct peptide identifications measured from each CITP fraction together with the low peptide fraction overlapping among identified peptides. The degree of peptide overlapping among CITP fractions is even lower than that achieved using combined CIEF/nano-RP LC separations for the analysis of the same mitochondrial sample. When evaluating the protein sequence coverage by the number of distinct peptides mapping to each mitochondrial protein identification, CITP/CZE similarly achieves superior performance with 1041 proteins (58%) having 3 or more distinct peptides, 233 (13%) having 2 distinct peptides, and 521 (29%) having a single distinct peptide. The reproducibility of protein identifications is found to be around 86% by comparing proteins identified from repeated runs of the same mitochondrial sample. The analysis of the mouse mitochondrial proteome by two CITP/CZE runs results in the detection of 2095 distinct mouse Swiss-Prot protein entries (or 1992 nonredundant proteins), corresponding to 59% coverage of the updated Maestro mitochondrial reference set. The collective analysis from combined CITP/CZE and CIEF-based proteomic studies yields the identification of 2191 distinct mitochondrial protein entries (or 2082 nonredundant proteins), corresponding to 76% coverage of the MitoP2-database reference set.


Assuntos
Química Encefálica , Eletroforese Capilar/métodos , Proteínas Mitocondriais/isolamento & purificação , Proteoma/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray/métodos , Sequência de Aminoácidos , Animais , Fracionamento Celular , Camundongos , Mitocôndrias , Proteínas Mitocondriais/química , Dados de Sequência Molecular , Fosforilação Oxidativa , Proteoma/química , Sinaptossomos/química
19.
J Interferon Cytokine Res ; 27(5): 383-92, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17523870

RESUMO

The induction of GRIM-19 has been shown to be essential for interferon-beta (IFN-beta)-induced and retinoic acid (RA)-induced tumor cell death. We have studied the localization and levels of GRIM-19 in IFN/RA-induced cell death in neural cells and in focal cerebral ischemia. Exposure to IFN/RA caused a approximately 15-fold increase in GRIM-19 protein levels and induced >50% cell death in human neuroblastoma SH-SY5Y cells. In rats subjected to permanent focal cerebral ischemia, increased oxidative stress, as well as increased GRIM mRNA levels (32-fold) and increased GRIM-19 (>50%) protein levels were noted in the ipsilateral (affected) hemisphere compared with the contralateral (unaffected) hemisphere. These results suggest that GRIM-19 may play a role in ischemia-induced neuronal cell death.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/efeitos dos fármacos , Isquemia Encefálica/fisiopatologia , Interferon beta/farmacologia , NADH NADPH Oxirredutases/metabolismo , Tretinoína/farmacologia , Animais , Isquemia Encefálica/etiologia , Linhagem Celular Tumoral , Combinação de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Neuroblastoma/patologia , Ratos , Ratos Wistar , Fatores de Tempo
20.
J Affect Disord ; 100(1-3): 75-82, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17113156

RESUMO

OBJECTIVE: The objective of this study was to develop a diagnostic blood test for bipolar disorder I using membrane potentials as biological markers. METHODS: We measured the fluorescence intensity of a dye sensitive to membrane potential in whole blood samples from bipolar I, unipolar, schizophrenic patients, and psychiatrically normal controls. Patients were diagnosed through structured clinical interviews according to DSM-IV. Both the t-test and logistic regression analysis were used to analyze the data. RESULTS: The membrane potential as indicated by the fluorescence intensity of the membrane potential dye in blood cells drawn from patients with bipolar disorder I was significantly different from the blood cells drawn from unipolar and schizophrenic patients, and from psychiatrically normal controls (P<0.001). The specificity and sensitivity were determined to be 0.88 and 0.78 respectively which compared well with the state of the art diagnostic techniques for other diseases. Logistic regression analysis revealed that the membrane potential was a reliable predictor which could be used as a diagnostic marker for bipolar I. CONCLUSIONS: These results indicate that the membrane potential of blood cells can be used as a diagnostic marker to augment the DSM-IV diagnosis of bipolar disorder I. Expanded clinical trials are needed to establish this technique for general use.


Assuntos
Transtorno Bipolar/sangue , Transtorno Bipolar/diagnóstico , Potenciais da Membrana/fisiologia , Adulto , Idoso , Manual Diagnóstico e Estatístico de Transtornos Mentais , Feminino , Fluorescência , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Esquizofrenia/sangue , Esquizofrenia/diagnóstico , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...