Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Technol ; 42(9): 1383-1391, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31526318

RESUMO

Incessant depletion of fossil fuels urges the governments and non-governmental organizations to invest more on renewable energy sectors including generation of biofuels such as bioethanol. Production of ethanol from algal feedstock has been an interesting area of research in recent times. In the present investigation, feedstock of a green alga Chlorococcum minutum was selected for ethanol production and compared with feedstock of model alga Chlamydomonas reinhardtii. Both the species were grown under in vitro conditions using universal tris-acetate-phosphate (TAP) medium with various concentrations and combinations of vitamins such as thiamin, biotin and cobalamin (B1, B7 and B12) to enhance the biomass in turn reducing sugars in both the algal cultures. Later, these algal feedstocks were used for the production of ethanol under fermentation conditions using yeast. Reducing sugars were more in both the algal cultures grown in Cr3 or Cm3 media (TAP with 0.8 g/L of B1, 0.004 g/L of B7 & 0.004 g/L of B12) and also in Cr2 or Cm2 media (TAP with 0.4 g/L of B1, 0.002 g/L of B7 & 0.002 g/L of B12). In extent, the enhancement of ethanol production was noticed in C. reinhardtii (33.57 g/L) and C. minutum (46.97 g/L) from the feedstocks grown in Cr3 or Cm3 media when compared with feedstocks grown in other vitamin combinations or without vitamin assistance. Specifically, feedstock of C. minutum generated more output at 48 h when compared with model alga. The present work may be useful for the production of ethanol at a commercial level.


Assuntos
Clorófitas , Etanol , Biocombustíveis , Biomassa , Fermentação
2.
Curr Drug Metab ; 20(12): 967-976, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31775595

RESUMO

BACKGROUND: Cancer and other disorders such as inflammation, autoimmune diseases and diabetes are the major health problems observed all over the world. Therefore, identifying a therapeutic target molecule for the treatment of these diseases is urgently needed to benefit public health. C-Phycocyanin (C-PC) is an important light yielding pigment intermittently systematized in the cyanobacterial species along with other algal species. It has numerous applications in the field of biotechnology and drug industry and also possesses antioxidant, anticancer, antiinflammatory, enhanced immune function, including liver and kidney protection properties. The molecular mechanism of action of C-PC for its anticancer activity could be the blockage of cell cycle progression, inducing apoptosis and autophagy in cancer cells. OBJECTIVES: The current review summarizes an update on therapeutic applications of C-PC, its mechanism of action and mainly focuses on the recent development in the field of C-PC as a drug that exhibits beneficial effects against various human diseases including cancer and inflammation. CONCLUSION: The data from various studies suggest the therapeutic applications of C-PC such as anti-cancer activity, anti-inflammation, anti-angiogenic activity and healing capacity of certain autoimmune disorders. Mechanism of action of C-PC for its anticancer activity is the blockage of cell cycle progression, inducing apoptosis and autophagy in cancer cells. The future perspective of C-PC is to identify and define the molecular mechanism of its anti-cancer, anti-inflammatory and antioxidant activities, which would shed light on our knowledge on therapeutic applications of C-PC and may contribute significant benefits to global public health.


Assuntos
Ficocianina/uso terapêutico , Antineoplásicos/farmacologia , Cianobactérias , Humanos , Ficobilissomas , Ficocianina/biossíntese , Ficocianina/química
3.
Planta ; 236(4): 1135-50, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22644765

RESUMO

Phytochrome A (phyA) in higher plants is known to function as a far-red/shade light-sensing photoreceptor in suppressing shade avoidance responses (SARs) to shade stress. In this paper, the Avena PHYA gene was introduced into creeping bentgrass (Agrostis stolonifera L.) and zoysiagrass (Zoysia japonica Steud.) to improve turf quality by suppressing the SARs. In addition to wild-type PHYA, a hyperactive mutant gene (S599A-PHYA), in which a phosphorylation site involved in light-signal attenuation was removed, was also transformed into the turfgrasses. Phenotypic traits of the transgenic plants were compared to assess the suppression of SARs under a simulated shade condition and outdoor field conditions after three growth seasons. Under the shade condition, the S599A-PhyA transgenic creeping bentgrass plants showed shade avoidance-suppressing phenotypes with a 45 % shorter leaf lengths, 24 % shorter internode lengths, and twofold increases in chlorophyll concentrations when compared with control plants. Transgenic zoysiagrass plants overexpressing S599A-PHYA also showed shade-tolerant phenotypes under the shade condition with reductions in leaf length (15 %), internode length (30 %), leaf length/width ratio (19 %) and leaf area (22 %), as well as increases in chlorophyll contents (19 %) and runner lengths (30 %) compared to control plants. The phenotypes of transgenic zoysiagrass were also investigated in dense field habitats, and the transgenic turfgrass exhibited shade-tolerant phenotypes similar to those observed under laboratory shade conditions. Therefore, the present study suggests that the hyperactive phyA is effective for the development of shade-tolerant plants, and that the shade tolerance nature is sustained under field conditions.


Assuntos
Agrostis/genética , Agrostis/fisiologia , Fitocromo A/genética , Poaceae/fisiologia , Agrostis/crescimento & desenvolvimento , Agrostis/efeitos da radiação , Southern Blotting , Clorofila/análise , Clorofila/metabolismo , Transporte de Elétrons , Fluorescência , Expressão Gênica , Luz , Microscopia Eletrônica de Varredura , Mutação , Fenótipo , Fosforilação , Fitocromo A/fisiologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Feixe Vascular de Plantas/ultraestrutura , Plantas Geneticamente Modificadas , Poaceae/genética , Poaceae/crescimento & desenvolvimento , Poaceae/efeitos da radiação
4.
Plant Cell Rep ; 28(3): 397-406, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19050897

RESUMO

Purple-colored transgenic creeping bentgrass (Agrostis stolonifera L.) plants were developed for ornamental purpose by means of Agrobacterium-mediated transformation. Embryogenic creeping bentgrass calli were transformed with the pCAMBIA 3301 vector harboring maize (Zea mays) flavonoid/anthocyanin biosynthetic pathway transcription factor genes, Lc (Leaf color) and Pl (Purple leaf), individually and in combination, and three types of putative transgenic plants (Lc, Pl, and Lc + Pl) were generated. Genomic integration and expression of the transgenes were confirmed by Southern and northern blot analyses, respectively. The transgenic creeping bentgrass plants expressing both Lc and Pl genes were entirely purple, whereas those expressing Pl alone had purple stems and those expressing Lc alone lacked purple pigmentation in adult plants. The anthocyanin content was estimated in all the three types of transgenic plant and correlated well with the degree of purple coloration observed. These results suggest that both Lc and Pl genes are necessary and sufficient to confer purple coloration to creeping bentgrass.


Assuntos
Agrostis/genética , Pigmentação/genética , Plantas Geneticamente Modificadas/genética , Fatores de Transcrição/genética , Zea mays/genética , Antocianinas/biossíntese , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Transferência de Genes , Genes de Plantas , Fenótipo , Proteínas de Plantas/genética , Rhizobium/genética , Transformação Genética
5.
Z Naturforsch C J Biosci ; 60(5-6): 505-7, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16042352

RESUMO

A protocol for micropropagation of Boswellia ovalifoliolata Bal & Henry (Burseraceae) was developed using cotyledonary nodal explant on Murashige and Skoog modified medium (MS). A comparative study of micropropagation with 6-benzyladenine, kinetin and thidiazuron along with 1-naphthalene acetic acid (0.054 microM) was conducted. The highest shoot multiplication (7.1 +/- 0.2 shoots per node) was achieved in 50 d on MS supplemented with thidiazuron (2.72 microM). Excised shoot cuttings of 3.0 cm were placed on the MS basal medium supplemented with indole-3-acetic acid and indole-3-butyric acid alone and in combinations for rooting. Activated charcoal (100 mg l(-1)) and polyvinylpyrrolidone (40 mg l(-1)) were added to the medium to prevent browning of cultures. The regenerated plantlets have been successfully acclimatized and transferred to soil.


Assuntos
Boswellia/fisiologia , Germinação/fisiologia , Sementes/fisiologia , Adenina/análogos & derivados , Adenina/farmacologia , Aminobutiratos/farmacologia , Técnicas de Cultura de Células , Divisão Celular/efeitos dos fármacos , Cinetina , Compostos de Fenilureia/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Brotos de Planta/citologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/fisiologia , Reprodução , Tiadiazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...