Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(7): 6857-6874, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36951721

RESUMO

Therapeutic interventions that counter emerging targets in diabetes eye diseases are lacking. We hypothesize that a combination therapy targeting inflammation and hyperglycemia can prevent diabetic eye diseases. Here, we report a multipronged approach to prevent diabetic cataracts and retinopathy by combining orally bioavailable curcumin-laden double-headed (two molecules of gambogic acid conjugated to terminal carboxyl groups of poly(d,l-lactide-co-glycolide)) nanoparticles and injectable basal insulin. The combination treatment led to a significant delay in the progression of diabetic cataracts and retinopathy, improving liver function and peripheral glucose homeostasis. We found a concurrent reduction in lens aggregate protein, AGEs, and increased mitochondrial ATP production. Importantly, inhibition of Piezo1 protected against hyperglycemia-induced retinal vascular damage suggesting possible involvement of Piezo1 in the regulation of retinal phototransduction. Histologic evaluation of murine small intestines revealed that chronic administration of curcumin-laden double-headed nanoparticles was well tolerated, circumventing the fear of nanoparticle toxicity. These findings establish the potential of anti-inflammatory and anti-hyperglycemic combination therapy for the prevention of diabetic cataracts and retinopathy.


Assuntos
Catarata , Curcumina , Diabetes Mellitus Experimental , Hiperglicemia , Nanopartículas , Doenças Retinianas , Camundongos , Animais , Curcumina/farmacologia , Curcumina/uso terapêutico , Roedores , Insulina de Ação Prolongada/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Anti-Inflamatórios/uso terapêutico , Hiperglicemia/tratamento farmacológico , Catarata/tratamento farmacológico , Insulina/uso terapêutico , Doenças Retinianas/tratamento farmacológico , Canais Iônicos
2.
Oncogene ; 35(49): 6330-6340, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27270442

RESUMO

MicroRNA-101, a tumor suppressor microRNA (miR), is often downregulated in cancer and is known to target multiple oncogenes. Some of the genes that are negatively regulated by miR-101 expression include histone methyltransferase EZH2 (enhancer of zeste homolog 2), COX2 (cyclooxygenase-2), POMP (proteasome maturation protein), CERS6, STMN1, MCL-1 and ROCK2, among others. In the present study, we show that miR-101 targets transcriptional coactivator SUB1 homolog (Saccharomyces cerevisiae)/PC4 (positive cofactor 4) and regulates its expression. SUB1 is known to have diverse role in vital cell processes such as DNA replication, repair and heterochromatinization. SUB1 is known to modulate transcription and acts as a mediator between the upstream activators and general transcription machinery. Expression profiling in several cancers revealed SUB1 overexpression, suggesting a potential role in tumorigenesis. However, detailed regulation and function of SUB1 has not been elucidated. In this study, we show elevated expression of SUB1 in aggressive prostate cancer. Knockdown of SUB1 in prostate cancer cells resulted in reduced cell proliferation, invasion and migration in vitro, and tumor growth and metastasis in vivo. Gene expression analyses coupled with chromatin immunoprecipitation revealed that SUB1 binds to the promoter regions of several oncogenes such as PLK1 (Polo-like kinase 1), C-MYC, serine-threonine kinase BUB1B and regulates their expression. Additionally, we observed SUB1 downregulated CDKN1B expression. PLK1 knockdown or use of PLK1 inhibitor can mitigate oncogenic function of SUB1 in benign prostate cancer cells. Thus, our study suggests that miR-101 loss results in increased SUB1 expression and subsequent activation of known oncogenes driving prostate cancer progression and metastasis. This study therefore demonstrates functional role of SUB1 in prostate cancer, and identifies its regulation and potential downstream therapeutic targets of SUB1 in prostate cancer.


Assuntos
Proteínas de Ligação a DNA/genética , MicroRNAs/genética , Neoplasias da Próstata/genética , Fatores de Transcrição/genética , Animais , Proliferação de Células/genética , Proteínas de Ligação a DNA/biossíntese , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Masculino , Camundongos , MicroRNAs/biossíntese , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Fatores de Transcrição/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA