Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 1809, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37002217

RESUMO

Plant productivity varies due to environmental heterogeneity, and theory suggests that plant diversity can reduce this variation. While there is strong evidence of diversity effects on temporal variability of productivity, whether this mechanism extends to variability across space remains elusive. Here we determine the relationship between plant diversity and spatial variability of productivity in 83 grasslands, and quantify the effect of experimentally increased spatial heterogeneity in environmental conditions on this relationship. We found that communities with higher plant species richness (alpha and gamma diversity) have lower spatial variability of productivity as reduced abundance of some species can be compensated for by increased abundance of other species. In contrast, high species dissimilarity among local communities (beta diversity) is positively associated with spatial variability of productivity, suggesting that changes in species composition can scale up to affect productivity. Experimentally increased spatial environmental heterogeneity weakens the effect of plant alpha and gamma diversity, and reveals that beta diversity can simultaneously decrease and increase spatial variability of productivity. Our findings unveil the generality of the diversity-stability theory across space, and suggest that reduced local diversity and biotic homogenization can affect the spatial reliability of key ecosystem functions.


Assuntos
Ecossistema , Pradaria , Biomassa , Biodiversidade , Reprodutibilidade dos Testes , Plantas
2.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260386

RESUMO

Anthropogenic nutrient enrichment is driving global biodiversity decline and modifying ecosystem functions. Theory suggests that plant functional types that fix atmospheric nitrogen have a competitive advantage in nitrogen-poor soils, but lose this advantage with increasing nitrogen supply. By contrast, the addition of phosphorus, potassium, and other nutrients may benefit such species in low-nutrient environments by enhancing their nitrogen-fixing capacity. We present a global-scale experiment confirming these predictions for nitrogen-fixing legumes (Fabaceae) across 45 grasslands on six continents. Nitrogen addition reduced legume cover, richness, and biomass, particularly in nitrogen-poor soils, while cover of non-nitrogen-fixing plants increased. The addition of phosphorous, potassium, and other nutrients enhanced legume abundance, but did not mitigate the negative effects of nitrogen addition. Increasing nitrogen supply thus has the potential to decrease the diversity and abundance of grassland legumes worldwide regardless of the availability of other nutrients, with consequences for biodiversity, food webs, ecosystem resilience, and genetic improvement of protein-rich agricultural plant species.


Assuntos
Fabaceae/fisiologia , Pradaria , Internacionalidade , Nitrogênio/farmacologia , Fósforo/farmacologia , Biodiversidade , Biomassa , Fabaceae/efeitos dos fármacos , Probabilidade
3.
Nat Ecol Evol ; 2(1): 50-56, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29203922

RESUMO

Biodiversity is declining in many local communities while also becoming increasingly homogenized across space. Experiments show that local plant species loss reduces ecosystem functioning and services, but the role of spatial homogenization of community composition and the potential interaction between diversity at different scales in maintaining ecosystem functioning remains unclear, especially when many functions are considered (ecosystem multifunctionality). We present an analysis of eight ecosystem functions measured in 65 grasslands worldwide. We find that more diverse grasslands-those with both species-rich local communities (α-diversity) and large compositional differences among localities (ß-diversity)-had higher levels of multifunctionality. Moreover, α- and ß-diversity synergistically affected multifunctionality, with higher levels of diversity at one scale amplifying the contribution to ecological functions at the other scale. The identity of species influencing ecosystem functioning differed among functions and across local communities, explaining why more diverse grasslands maintained greater functionality when more functions and localities were considered. These results were robust to variation in environmental drivers. Our findings reveal that plant diversity, at both local and landscape scales, contributes to the maintenance of multiple ecosystem services provided by grasslands. Preserving ecosystem functioning therefore requires conservation of biodiversity both within and among ecological communities.


Assuntos
Biodiversidade , Pradaria , Plantas , Modelos Biológicos , Análise Espacial
4.
Nature ; 537(7618): 93-96, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27556951

RESUMO

Niche dimensionality provides a general theoretical explanation for biodiversity-more niches, defined by more limiting factors, allow for more ways that species can coexist. Because plant species compete for the same set of limiting resources, theory predicts that addition of a limiting resource eliminates potential trade-offs, reducing the number of species that can coexist. Multiple nutrient limitation of plant production is common and therefore fertilization may reduce diversity by reducing the number or dimensionality of belowground limiting factors. At the same time, nutrient addition, by increasing biomass, should ultimately shift competition from belowground nutrients towards a one-dimensional competitive trade-off for light. Here we show that plant species diversity decreased when a greater number of limiting nutrients were added across 45 grassland sites from a multi-continent experimental network. The number of added nutrients predicted diversity loss, even after controlling for effects of plant biomass, and even where biomass production was not nutrient-limited. We found that elevated resource supply reduced niche dimensionality and diversity and increased both productivity and compositional turnover. Our results point to the importance of understanding dimensionality in ecological systems that are undergoing diversity loss in response to multiple global change factors.


Assuntos
Biodiversidade , Fertilizantes , Pradaria , Plantas/classificação , Plantas/metabolismo , Biomassa , Alimentos , Luz , Plantas/efeitos da radiação , Poaceae/classificação , Poaceae/efeitos dos fármacos , Poaceae/crescimento & desenvolvimento , Poaceae/efeitos da radiação
5.
Artigo em Inglês | MEDLINE | ID: mdl-27114575

RESUMO

Ecosystem eutrophication often increases domination by non-natives and causes displacement of native taxa. However, variation in environmental conditions may affect the outcome of interactions between native and non-native taxa in environments where nutrient supply is elevated. We examined the interactive effects of eutrophication, climate variability and climate average conditions on the success of native and non-native plant species using experimental nutrient manipulations replicated at 32 grassland sites on four continents. We hypothesized that effects of nutrient addition would be greatest where climate was stable and benign, owing to reduced niche partitioning. We found that the abundance of non-native species increased with nutrient addition independent of climate; however, nutrient addition increased non-native species richness and decreased native species richness, with these effects dampened in warmer or wetter sites. Eutrophication also altered the time scale in which grassland invasion responded to climate, decreasing the importance of long-term climate and increasing that of annual climate. Thus, climatic conditions mediate the responses of native and non-native flora to nutrient enrichment. Our results suggest that the negative effect of nutrient addition on native abundance is decoupled from its effect on richness, and reduces the time scale of the links between climate and compositional change.


Assuntos
Biota/fisiologia , Clima , Eutrofização , Pradaria , Espécies Introduzidas , Mudança Climática , Micronutrientes/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Fenômenos Fisiológicos Vegetais , Potássio/metabolismo
6.
Oecologia ; 167(1): 117-29, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21476033

RESUMO

Environmental conditions and plant genotype may influence insect herbivory along elevational gradients. Plant damage would decrease with elevation as temperature declines to suboptimal levels for insects. However, host plants at higher elevations may exhibit traits that either reduce or enhance leaf quality to insects, with uncertain net effects on herbivory. We examined folivory, insect abundance and leaf traits along six replicated elevational ranges in Nothofagus pumilio forests of the northern Patagonian Andes, Argentina. We also conducted a reciprocal transplant experiment between low- and high-elevation sites to test the extent of environmental and plant genetic control on insect abundance and folivory. We found that insect abundance, leaf size and specific leaf area decreased, whereas foliar phosphorous content increased, from low-, through mid- to high-elevation sites. Path analysis indicated that changes in both insect abundance and leaf traits were important in reducing folivory with increasing elevation and decreasing mean temperature. At both planting sites, plants from a low-elevation origin experienced higher damage and supported greater insect loads than plants from a high-elevation origin. The differences in leaf damage between sites were twofold larger than those between plant origins, suggesting that local environment was more important than host genotype in explaining folivory patterns. Different folivore guilds exhibited qualitatively similar responses to elevation. Our results suggest an increase in insect folivory on high-elevation N. pumilio forests under future climate warming scenarios. However, in the short-term, folivory increases might be smaller than expected from insect abundance only because at high elevations herbivores would encounter more resistant tree genotypes.


Assuntos
Altitude , Betulaceae/genética , Ecossistema , Herbivoria , Insetos , Animais , Argentina , Comportamento Alimentar , Folhas de Planta
7.
Oecologia ; 167(1): 141-8, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21384175

RESUMO

Woody plant encroachment of savanna ecosystems has been related to altered disturbance regimes, mainly fire suppression and herbivore exclusion. In contrast, neighbourhood interactions among resident and colonising woody species have received little attention, despite their likely influence on the pattern and rate of tree establishment. We examined how resident palm trees (Butia yatay) and established adults of two riparian forest tree species (Allophylus edulis and Sebastiania commersoniana) influenced seed arrival and seedling performance of the latter two species in a humid savanna of east-central Argentina. Seed traps and seedlings of both riparian species were placed in herbaceous openings, and beneath palm, conspecific and heterospecific adult trees in two unburned savanna patches, and were monitored for 2 years. Only seeds of the bird-dispersed Allophylus arrived in palm microsites, yet survival of Allophylus seedlings near adult palms was limited by animal damage through trampling and burrowing, a non-trophic mechanism of apparent competition. Seeds of both riparian species dispersed into conspecific microsites, although adult trees selectively reduced growth of conspecific seedlings, a pattern consistent with the "escape hypothesis". Further, survival of Sebastiania increased in the moister Allophylus microsites, suggesting a one-way facilitative interaction between woody colonisers. Our results indicate that dispersal facilitation by resident savanna trees may be critical to riparian species invasion after fire suppression. Distance-dependent effects of conspecific and heterospecific adult trees could contribute to shape the subsequent dynamics of woody seedling establishment. Overall, we show that indirect interactions can play a prominent role in savanna encroachment by non-resident woody species.


Assuntos
Arecaceae/fisiologia , Ecossistema , Plântula/fisiologia , Árvores/fisiologia , Argentina , Euphorbiaceae/fisiologia , Geografia , Rios , Sapindaceae/fisiologia , Dispersão de Sementes , Especificidade da Espécie
8.
Oecologia ; 165(2): 465-75, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20686788

RESUMO

Plants infected with vertically transmitted fungal endophytes carry their microbial symbionts with them during dispersal into new areas. Yet, whether seed-borne endophytes enhance the host plant's ability to overcome colonisation barriers and to regenerate within invaded sites remains poorly understood. We examined how symbiosis with asexual endophytic fungi (Neotyphodium) affected establishment and seed loss to predators in the invasive annual grass Lolium multiflorum (Italian ryegrass) across contrasting successional plots. Italian ryegrass seeds with high and low endophyte incidence were sown into three communities: a 1-year-old fallow field, a 15-year-old grassland, and a 24-year-old forest, which conformed to an old-field chronosequence in the eastern Inland Pampa, Argentina. We found that endophyte infection consistently increased host population recruitment and reproductive output. Endophyte presence also enhanced aerial biomass production of ryegrass in a low recruitment year but not in a high recruitment year, suggesting that symbiotic effects on growth performance are density dependent. Endophyte presence reduced seed removal by rodents, although differential predation may not account for the increased success of infected grass populations. Overall, there was no statistical evidence for an endophyte-by-site interaction, indicating that the fungal endosymbiont benefitted host establishment regardless of large differences in biotic and abiotic environment among communities. Our results imply that hereditary endophytes may increase the chances for host grass species to pass various ecological filters associated with invasion resistance across a broad range of successional habitats.


Assuntos
Ecossistema , Fungos/fisiologia , Poaceae/microbiologia , Simbiose , Fungos/classificação , Lolium/crescimento & desenvolvimento , Lolium/microbiologia , Lolium/fisiologia , Neotyphodium/fisiologia , Poaceae/crescimento & desenvolvimento , Poaceae/fisiologia , Densidade Demográfica , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Fatores de Tempo
9.
Oecologia ; 161(4): 771-80, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19590896

RESUMO

Plant cover plays a major role in shaping the nature of recruitment microsites through direct (resource mediated) and indirect (consumer mediated) interactions. Understorey plants may differentially affect seedling establishment, thus contributing to regeneration-niche separation among canopy tree species. We examined patterns of early tree seedling survival resulting from interactive effects of understorey bamboo (Chusquea culeou) and resident consumers in a mixed temperate Patagonian forest, Argentina. Newly germinated seedlings of Nothofagus dombeyi and Austrocedrus chilensis were planted in bamboo thickets and non-bamboo patches, with or without small-vertebrate exclosures. We found species-specific patterns of seedling survival in relation to bamboo cover. Nothofagus survival was generally low but increased under bamboo, irrespective of cage treatment. Desiccation stress accounted for most Nothofagus mortality in open, non-bamboo areas. In contrast, Austrocedrus survival was highest in non-bamboo microsites, as most seedlings beneath bamboo were killed by small vertebrates through direct consumption or non-trophic physical damage. There was little evidence for a negative impact of bamboo on tree seedling survival attributable to resource competition. The balance of simultaneous positive and negative interactions implied that bamboo presence facilitated Nothofagus early establishment but inhibited Austrocedrus recruitment via apparent competition. These results illustrate the potential for dominant understorey plants to promote microsite segregation during early stages of recruitment between tree seedlings having different susceptibilities to water stress and herbivory. We recognise, however, that patterns of bamboo-seedling interactions may be conditional on moisture levels and consumer activity during establishment. Hence, both biotic and abiotic heterogeneity in understorey environments should be incorporated into conceptual models of regeneration dynamics and tree coexistence in forest communities.


Assuntos
Bambusa/anatomia & histologia , Bambusa/fisiologia , Clima , Ecossistema , Árvores/fisiologia , Animais , Argentina , Germinação/fisiologia , Dinâmica Populacional , Plântula/fisiologia , Especificidade da Espécie , Árvores/anatomia & histologia
10.
Ecology ; 88(10): 2541-54, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18027757

RESUMO

Resource pulses often involve extraordinary increases in prey availability that "swamp" consumers and reverberate through indirect interactions affecting other community members. We developed a model that predicts predator-mediated indirect effects induced by an epidemic prey on co-occurring prey types differing in relative profitability/preference and validated our model by examining current-season and delayed effects of a bamboo mass seeding event on seed survival of canopy tree species in mixed Patagonian forests. The model shows that predator foraging behavior, prey profitability, and the scale of prey swamping influence the character and strength of short-term indirect effects on various alternative prey. When in large prey-swamped patches, nonselective predators decrease predation on all prey types. Selective predators, instead, only benefit prey of similar quality to the swamping species, while very low or high preference prey remain unaffected. Negative indirect effects (apparent competition) may override such positive effects (apparent mutualism), especially for highly preferred prey, when prey-swamped patches are small enough to allow predator aggregation and/or predators show a reproductive numerical response to elevated food supply. Seed predation patterns during bamboo (Chusquea culeou) masting were consistent with predicted short-term indirect effects mediated by a selective predator foraging in large prey-swamped patches. Bamboo seeds and similarly-sized Austrocedrus chilensis (ciprés) and Nothofagus obliqua (roble) seeds suffered lower predation in bamboo flowered than nonflowered patches. Predation rates on the small-seeded Nothofagus dombeyi (coihue) and the large-seeded Nothofagus alpina (rauli) were independent of bamboo flowering. Indirect positive effects were transient; three months after bamboo seeding, granivores preyed heavily upon all seed types, irrespective of patch flowering condition. Moreover, one year after bamboo seeding, predation rates on the most preferred seed (rauli) was higher in flowered than in nonflowered patches. Despite rapid predator numerical responses, short-term positive effects can still influence community recruitment dynamics because surviving seeds may find refuge beneath the litter produced by bamboo dieback. Together, our theoretical analysis and experiments indicate that indirect effects experienced by alternative prey during and after prey-swamping episodes need not be universal but can change across a prey quality spectrum, and they critically depend on predator-foraging rules and the spatial scale of swamping.


Assuntos
Cadeia Alimentar , Preferências Alimentares , Comportamento Predatório/fisiologia , Sasa/fisiologia , Animais , Ecossistema , Abastecimento de Alimentos , Dinâmica Populacional , Estações do Ano , Sementes/crescimento & desenvolvimento
11.
Ecology ; 88(1): 188-99, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17489467

RESUMO

Isolating the single effects and net balance of negative and positive species effects in complex interaction networks is a necessary step for understanding community dynamics. Facilitation and competition have both been found to operate in harsh environments, but their relative strength may be predicted to change along gradients of herbivory. Moreover, facilitation effects through habitat amelioration and protection from herbivory may act together determining the outcome of neighborhood plant-plant interactions. We tested the hypothesis that grazing pressure alters the balance of positive and negative interactions between palatable and unpalatable species by increasing the strength of positive indirect effects mediated by associational resistance to herbivory. We conducted a two-year factorial experiment in which distance (i.e., spatial association) from the nearest unpalatable neighbor (Stipa speciosa) and root competition were manipulated for two palatable grasses (Poa ligularis and Bromus pictus), at three levels of sheep grazing (none, moderate, and high) in a Patagonian steppe community. We found that grazing shifted the effect of Stipa on both palatable grasses, from negative (competition) in the absence of grazing to positive (facilitation) under increasing herbivore pressure. In ungrazed sites, belowground competition was the dominant interaction, as shown by a significant reduction in performance of palatable grasses transplanted near to Stipa tussocks. In grazed sites, biomass of palatable plants was greater near than far from Stipa regardless of competition treatment. Proximity to Stipa reduced the amount of herbivory suffered by palatable grasses, an indirect effect that was stronger under moderate than under intense grazing. Our results demonstrate that facilitation, resulting mainly from protection against herbivory, is the overriding effect produced by unpalatable neighbors on palatable grasses in this rangeland community. This finding challenges the common view that abiotic stress amelioration should be the predominant type of facilitation in arid environments and highlights the role of herbivory in modulating complex neighborhood plant interactions in grazing systems.


Assuntos
Ecossistema , Poaceae , Ovinos , Animais , Argentina , Bromus , Plantas Comestíveis , Poa
12.
Oecologia ; 151(4): 650-62, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17242908

RESUMO

Changes in plant community composition induced by vertebrate grazers have been found to either accelerate or slow C and nutrient cycling in soil. This variation may reflect the differential effects of grazing-promoted (G+) plant species on overall litter quality and decomposition processes. Further, site conditions associated with prior grazing history are expected to influence litter decay and nutrient turnover. We studied how grazing-induced changes in plant life forms and species identity modified the quality of litter inputs to soil, decomposition rate and nutrient release in a flooding Pampa grassland, Argentina. Litter from G+ forbs and grasses (two species each) and grazing-reduced (G-) grasses (two species) was incubated in long-term grazed and ungrazed sites. G+ species, overall, showed higher rates of decomposition and N and P release from litter. However, this pattern was primarily driven by the low-growing, high litter-quality forbs included among G+ species. Forbs decomposed and released nutrients faster than either G+ or G- grasses. While no consistent differences between G+ and G- grasses were observed, patterns of grass litter decay and nutrient release corresponded with interspecific differences in phenology and photosynthetic pathway. Litter decomposition, N release and soil N availability were higher in the grazed site, irrespective of species litter type. Our results contradict the notion that grazing, by reducing more palatable species and promoting less palatable ones, should decrease nutrient cycling from litter. Plant tissue quality and palatability may not unequivocally link patterns of grazing resistance and litter decomposability within a community, especially where grazing causes major shifts in life form composition. Thus, plant functional groups defined by species' "responses" to grazing may only partially overlap with functional groups based on species "effects" on C and nutrient cycling.


Assuntos
Ecossistema , Nitrogênio/metabolismo , Fósforo/metabolismo , Poaceae/metabolismo , Animais , Comportamento Alimentar , Plantas/metabolismo , Solo/análise
13.
Oecologia ; 128(4): 594-602, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28547405

RESUMO

Factors limiting tree invasion in the Inland Pampas of Argentina were studied by monitoring the establishment of four alien tree species in remnant grassland and cultivated forest stands. We tested whether disturbances facilitated tree seedling recruitment and survival once seeds of invaders were made available by hand sowing. Seed addition to grassland failed to produce seedlings of two study species, Ligustrum lucidum and Ulmus pumila, but did result in abundant recruitment of Gleditsia triacanthos and Prosopis caldenia. While emergence was sparse in intact grassland, seedling densities were significantly increased by canopy and soil disturbances. Longer-term surveys showed that only Gleditsia became successfully established in disturbed grassland. These results support the hypothesis that interference from herbaceous vegetation may play a significant role in slowing down tree invasion, whereas disturbances create microsites that can be exploited by invasive woody plants. Seed sowing in a Ligustrum forest promoted the emergence of all four study species in understorey and treefall gap conditions. Litter removal had species-specific effects on emergence and early seedling growth, but had little impact on survivorship. Seedlings emerging under the closed forest canopy died within a few months. In the treefall gap, recruits of Gleditsia and Prosopis survived the first year, but did not survive in the longer term after natural gap closure. The forest community thus appeared less susceptible to colonization by alien trees than the grassland. We conclude that tree invasion in this system is strongly limited by the availability of recruitment microsites and biotic interactions, as well as by dispersal from existing propagule sources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...