Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Res ; 11(1): 4-12, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36367967

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) presents a 5-year overall survival rate of 11%, despite efforts to improve clinical outcomes in the past two decades. Therapeutic resistance is a hallmark of this disease, due to its dense and suppressive tumor microenvironment (TME). Endoscopic ultrasound-guided radiofrequency ablation (EUS-RFA) is a promising local ablative and potential immunomodulatory therapy for PDAC. In this study, we performed RFA in a preclinical tumor-bearing KrasG12D; Trp53R172H/+; Pdx1:Cre (KPC) syngeneic model, analyzed local and abscopal affects after RFA and compared our findings with resected PDAC specimens. We found that RFA reduced PDAC tumor progression in vivo and promoted strong TME remodeling. In addition, we discovered tumor-infiltrating neutrophils determined abscopal effects. Using imaging mass cytometry, we showed that RFA elevated dendritic cell numbers in RFA-treated tumors and promoted a significant CD4+ and CD8+ T-cell abscopal response. In addition, RFA elevated levels of programmed death-ligand 1 (PD-L1) and checkpoint blockade inhibition targeting PD-L1 sustained tumor growth reduction in the context of RFA. This study indicates RFA treatment, which has been shown to increase tumor antigen shedding, promotes antitumor immunity. This is critical in PDAC where recent clinical immunotherapy trials have not resulted in substantial changes in overall survival.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Ablação por Radiofrequência , Humanos , Antígeno B7-H1/farmacologia , Microambiente Tumoral , Neutrófilos , Neoplasias Pancreáticas/patologia , Imunomodulação , Neoplasias Pancreáticas
2.
Dig Med Res ; 52022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36339901

RESUMO

Background and Objective: Liver fibrosis is a disease with characteristics of an aberrant wound healing response. Fibrosis is commonly the end-stage for chronic liver diseases like alcohol-associated liver disease (ALD), metabolic-associated liver disease, viral hepatitis, and hepatic autoimmune disease. Innate immunity contributes to the progression of many diseases through multiple mechanisms including production of pro-inflammatory mediators, leukocyte infiltration and tissue injury. Chemokines and their receptors orchestrate accumulation and activation of immune cells in tissues and are associated with multiple liver diseases; however, much less is known about their potential roles in liver fibrosis. This is a narrative review of current knowledge of the relationship of chemokine biology to liver fibrosis with insights into potential future therapeutic opportunities that can be explored in the future. Methods: A comprehensive literature review was performed searching PubMed for relevant English studies and texts regarding chemokine biology, chronic liver disease and liver fibrosis published between 1993 and 2021. The review was written and constructed to detail the intriguing chemokine biology, the relation of chemokines to tissue injury and resolution, and identify areas of discovery for fibrosis treatment. Key Content and Findings: Chemokines are implicated in many chronic liver diseases, regardless of etiology. Most of these diseases will progress to fibrosis without appropriate treatment. The contributions of chemokines to liver disease and fibrosis are diverse and include canonical roles of modulating hepatic inflammation as well as directly contributing to fibrosis via activation of hepatic stellate cells (HSCs). Limited clinical evidence suggests that targeting chemokines in certain liver diseases might provide a therapeutic benefit to patients with hepatic fibrosis. Conclusions: The chemokine system of ligands and receptors is a complex network of inflammatory signals in nearly all diseases. The specific sources of chemokines and cellular targets lend unique pathophysiological consequences to chronic liver diseases and established fibrosis. Although most chemokines are pro-inflammatory and contribute to tissue injury, others likely aid in the resolution of established fibrosis. To date, very few targeted therapies exist for the chemokine system and liver disease and/or fibrosis, and further study could identify viable treatment options to improve outcomes in patients with end-stage liver disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...