Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Diagnostics (Basel) ; 14(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38396454

RESUMO

BACKGROUND: Klebsiella pneumoniae (K. pneumoniae) urinary tract infections pose a significant challenge in Taiwan. The significance of this issue arises because of the growing concerns about the antibiotic resistance of K. pneumoniae. Therefore, this study aimed to uncover potential genomic risk factors in Taiwanese patients with K. pneumoniae urinary tract infections through genome-wide association studies (GWAS). METHODS: Genotyping data are obtained from participants with a history of urinary tract infections enrolled at the Tri-Service General Hospital as part of the Taiwan Precision Medicine Initiative (TPMI). A case-control study employing GWAS is designed to detect potential susceptibility single-nucleotide polymorphisms (SNPs) in patients with K. pneumoniae-related urinary tract infections. The associated genes are determined using a genome browser, and their expression profiles are validated via the GTEx database. The GO, Reactome, DisGeNET, and MalaCards databases are also consulted to determine further connections between biological functions, molecular pathways, and associated diseases between these genes. RESULTS: The results identified 11 genetic variants with higher odds ratios compared to controls. These variants are implicated in processes such as adhesion, protein depolymerization, Ca2+-activated potassium channels, SUMOylation, and protein ubiquitination, which could potentially influence the host immune response. CONCLUSIONS: This study implies that certain risk variants may be linked to K. pneumoniae infections by affecting diverse molecular functions that can potentially impact host immunity. Additional research and follow-up studies are necessary to elucidate the influence of these risk variants on infectious diseases and develop targeted interventions for mitigating the spread of K. pneumoniae urinary tract infections.

2.
Nat Commun ; 14(1): 8273, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092736

RESUMO

Adult tissue-resident macrophages (RMs) are either maintained by blood monocytes or through self-renewal. While the presence of a nurturing niche is likely crucial to support the survival and function of self-renewing RMs, evidence regarding its nature is limited. Here, we identify fibro-adipogenic progenitors (FAPs) as the main source of colony-stimulating factor 1 (CSF1) in resting skeletal muscle. Using parabiosis in combination with FAP-deficient transgenic mice (PdgfrαCreERT2 × DTA) or mice lacking FAP-derived CSF1 (PdgfrαCreERT2 × Csf1flox/null), we show that local CSF1 from FAPs is required for the survival of both TIM4- monocyte-derived and TIM4+ self-renewing RMs in adult skeletal muscle. The spatial distribution and number of TIM4+ RMs coincide with those of dipeptidyl peptidase IV (DPPIV)+ FAPs, suggesting their role as CSF1-producing niche cells for self-renewing RMs. This finding identifies opportunities to precisely manipulate the function of self-renewing RMs in situ to further unravel their role in health and disease.


Assuntos
Dipeptidil Peptidase 4 , Receptor alfa de Fator de Crescimento Derivado de Plaquetas , Camundongos , Animais , Diferenciação Celular/fisiologia , Dipeptidil Peptidase 4/genética , Adipogenia , Músculo Esquelético , Camundongos Transgênicos , Macrófagos
3.
Liver Cancer ; 12(6): 550-564, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38058418

RESUMO

Introduction: Sarcopenia is an adverse prognostic factor in patients with liver cirrhosis and hepatocellular carcinoma (HCC). Image-based sarcopenia assessment allows a standardized method to assess abdominal skeletal muscle. However, which is an index muscle for sarcopenia remains unclear. Therefore, we investigated whether sarcopenia defined according to different muscle groups with computed tomography (CT) scans can predict the prognosis of HCC after radioembolization. Methods: In this retrospective study, we analyzed patients who underwent radioembolization for unresectable HCC between January 2010 and December 2019. Before treatment, the total abdominal muscle (TAM), psoas muscle (PM), and paraspinal muscle (PS) areas were evaluated using a single CT slice at the third lumbar vertebra. In previous studies, sarcopenia was determined using the TAM, PM, and PS after stratifying by sex. Finally, we investigated each muscle-defined sarcopenia to decide whether or not it can serve as a prognostic factor for overall survival (OS). Results: We included 92 patients (74 men and 18 women). TAM, PM, and PS areas were significantly higher in the men than in the women (all p < 0.05). The patients with sarcopenia defined using PM, but not TAM and PS, exhibited significantly poorer OS than those without sarcopenia (median 15.3 vs. 23.8 months, p = 0.034, 0.821, and 0.341, respectively). After adjustment for clinical variables, such as body mass index, liver function, alpha-fetoprotein level, clinical staging, treatment response, and posttreatment curative therapy, PM-defined sarcopenia (hazard ratio: 1.899, 95% confidence interval: 1.087-3.315) remained an independent predictor for the poor OS. Conclusion: CT-assessed sarcopenia defined using PM was an independent prognostic factor for the poorer prognosis of unresectable HCC after radioembolization.

4.
Diagnostics (Basel) ; 13(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38132252

RESUMO

The emergence of the Omicron (B.1.1.529) variant of SARS-CoV-2 has precipitated a new global wave of the COVID-19 pandemic. The rapid identification of SARS-CoV-2 infection is imperative for the effective mitigation of transmission. Diagnostic modalities such as rapid antigen testing and real-time reverse transcription polymerase chain reaction (RT-PCR) offer expedient turnaround times of 10-15 min and straightforward implementation. This preliminary study assessed the correlation between outcomes of commercially available rapid antigen tests for home use and conventional reverse transcription polymerase chain reaction (RT-PCR) assays using a limited set of clinical specimens. Patients aged 5-99 years presenting to the emergency department for SARS-CoV-2 testing were eligible for enrollment (n = 5652). Direct PCR and conventional RT-PCR were utilized for the detection of SARS-CoV-2. The entire cohort of 5652 clinical specimens was assessed by both modalities to determine the clinical utility of the direct RT-PCR assay. Timely confirmation of SARS-CoV-2 infection may attenuate viral propagation and guide therapeutic interventions. Additionally, direct RT-PCR as a secondary confirmatory test for at-home rapid antigen test results demonstrated sensitivity comparable to conventional RT-PCR, indicating utility for implementation in laboratories globally, especially in resource-limited settings with constraints on reagents, equipment, and skilled personnel. In summary, direct RT-PCR enables the detection of SARS-CoV-2 with a sensitivity approaching that of conventional RT-PCR while offering expedient throughput and shorter turnaround times. Moreover, direct RT-PCR provides an open-source option for diagnostic laboratories worldwide, particularly in low- and middle-income countries.

5.
J Med Virol ; 95(7): e28914, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37394776

RESUMO

The Omicron variant of concern (VOC) has surged in many countries and replaced the previously reported VOC. To identify different Omicron strains/sublineages on a rapid, convenient, and precise platform, we report a novel multiplex real-time reverse transcriptase polymerase chain reaction (RT-PCR) method in one tube based on the Omicron lineage sequence variants' information. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) subvariants were used in a PCR-based assay for rapid identification of Omicron sublineage genotyping in 1000 clinical samples. Several characteristic mutations were analyzed using specific primers and probes for the spike gene, del69-70, and F486V. To distinguish Omicron sublineages (BA.2, BA.4, and BA.5), the NSP1:141-143del in the ORF1a region and D3N mutation in membrane protein occurring outside the spike protein region were analyzed. Results from the real-time PCR assay for one-tube accuracy were compared to those of whole genome sequencing. The developed PCR assay was used to analyze 400 SARS-CoV-2 positive samples. Ten samples determined as BA.4 were positive for NSP1:141-143del, del69-70, and F486V mutations; 160 BA.5 samples were positive for D3N, del69-70, and F486V mutations, and 230 BA.2 samples were without del69-70. Screening these samples allowed the identification of epidemic trends at different time intervals. Our novel one-tube multiplex PCR assay was effective in identifying Omicron sublineages.


Assuntos
COVID-19 , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , COVID-19/diagnóstico , COVID-19/epidemiologia , SARS-CoV-2/genética , Pandemias , Teste para COVID-19 , Reação em Cadeia da Polimerase Multiplex , Glicoproteína da Espícula de Coronavírus
6.
Bioresour Technol ; 377: 128959, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36965583

RESUMO

The aim of this work was to study the effect of thermal alkaline pretreatment and zinc acetate-catalyzed methanolysis (MtOH-ZnOAc) in biogas production from bioplastic in anaerobic digestion. The pretreated bioplastic with MtOH-ZnOAc performs efficient solubilization and produced 205.7 ± 6.9 mL/g CODadded, which is higher than thermal alkaline degradation. The mesophilic condition produces more than 79% higher biogas compared with the thermophilic condition with the diluted pretreated bioplastic by 30 times. The kinetic study was well fit the experimental data and showed the correlation between cumulative biogas, production rate, and lag phase with mono- and two-stage system in batch fermentation. The two-stage system produced 315.6 ± 7.7 mL/g CODadded which was higher 67.2 ± 2.02 than the mono-stage system. Methanosaetaceae predominates among the Archaea, which are primarily responsible for methanogenesis, showing a contribution to a higher biogas production rate.


Assuntos
Biocombustíveis , Acetato de Zinco , Anaerobiose , Reatores Biológicos , Biopolímeros/metabolismo , Catálise , Metano/metabolismo
7.
PeerJ ; 11: e14666, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36710871

RESUMO

Purpose: Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major healthcare threat worldwide. Since it was first identified in November 2021, the Omicron (B.1.1.529) variant of SARS-CoV-2 has evolved into several lineages, including BA.1, BA.2-BA.4, and BA.5. SARS-CoV-2 variants might increase transmissibility, pathogenicity, and resistance to vaccine-induced immunity. Thus, the epidemiological surveillance of circulating lineages using variant phenotyping is essential. The aim of the current study was to characterize the clinical outcome of Omicron BA.2 infections among hospitalized COVID-19 patients and to perform an immunological assessment of such cases against SARS-CoV-2. Patients and Methods: We evaluated the analytical and clinical performance of the BioIC SARS-CoV-2 immunoglobulin (Ig)M/IgG detection kit, which was used for detecting antibodies against SARS-CoV-2 in 257 patients infected with the Omicron variant. Results: Poor prognosis was noted in 38 patients, including eight deaths in patients characterized by comorbidities predisposing them to severe COVID-19. The variant-of-concern (VOC) typing and serological analysis identified time-dependent epidemic trends of BA.2 variants emerging in the outbreak of the fourth wave in Taiwan. Of the 257 specimens analyzed, 108 (42%) and 24 (9.3%) were positive for anti-N IgM and IgG respectively. Conclusion: The VOC typing of these samples allowed for the identification of epidemic trends by time intervals, including the B.1.1.529 variant replacing the B.1.617.2 variant. Moreover, antibody testing might serve as a complementary method for COVID-19 diagnosis. The combination of serological testing results with the reverse transcription-polymerase chain reaction cycle threshold value has potential value in disease prognosis, thereby aiding in epidemic investigations conducted by clinicians or the healthcare department.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Teste para COVID-19 , Algoritmos , Anticorpos Antivirais , Imunoglobulina G , Imunoglobulina M
8.
Int J Infect Dis ; 127: 56-62, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36455809

RESUMO

OBJECTIVES: We have established a novel 5-in-1 VOC assay to rapidly detect SARS-CoV-2 and immediately distinguish whether positive samples represent variants of concern (VOCs). METHODS: This assay could distinguish among five VOCs: Alpha, Beta, Gamma, Delta, and Omicron, in a single reaction tube. The five variants exhibit different single nucleotide polymorphisms (SNPs) in their viral genome, which can be used to distinguish them. We selected target SNPs in the spike gene, including N501Y, P681R, K417N, and deletion H69/V70 for the assay. RESULTS: The limit of detection of each gene locus was 80 copies per polymerase chain reaction. We observed a high consistency among the results when comparing the performance of our 5-in-1 VOC assay, whole gene sequencing, and the Roche VirSNiP SARS-CoV-2 test in retrospectively analyzing 150 clinical SARS-CoV-2 variant positive samples. The 5-in-1 VOC assay offers an alternative and rapid high-throughput test for most diagnostic laboratories in a flexible sample-to-result platform. CONCLUSION: The assay can also be applied in a commercial platform with the completion of the SARS-CoV-2 confirmation test and identification of its variant within 2.5 hours.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Estudos Retrospectivos , COVID-19/diagnóstico , Reação em Cadeia da Polimerase , DNA Polimerase Dirigida por RNA , Teste para COVID-19
9.
Proc Natl Acad Sci U S A ; 119(44): e2209976119, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36279473

RESUMO

IFNγ is traditionally known as a proinflammatory cytokine with diverse roles in antimicrobial and antitumor immunity. Yet, findings regarding its sources and functions during the regeneration process following a sterile injury are conflicting. Here, we show that natural killer (NK) cells are the main source of IFNγ in regenerating muscle. Beyond this cell population, IFNγ production is limited to a small population of T cells. We further show that NK cells do not play a major role in muscle regeneration following an acute injury or in dystrophic mice. Surprisingly, the absence of IFNγ per se also has no effect on muscle regeneration following an acute injury. However, the role of IFNγ is partially unmasked when TNFα is also neutralized, suggesting a compensatory mechanism. Using transgenic mice, we showed that conditional inhibition of IFNGR1 signaling in muscle stem cells or fibro-adipogenic progenitors does not play a major role in muscle regeneration. In contrast to common belief, we found that IFNγ is not present in the early inflammatory phase of the regeneration process but rather peaks when macrophages are acquiring an anti-inflammatory phenotype. Further transcriptomic analysis suggests that IFNγ cooperates with TNFα to regulate the transition of macrophages from pro- to anti-inflammatory states. The absence of the cooperative effect of these cytokines on macrophages, however, does not result in significant regeneration impairment likely due to the presence of other compensatory mechanisms. Our findings support the arising view of IFNγ as a pleiotropic inflammatory regulator rather than an inducer of the inflammatory response.


Assuntos
Macrófagos , Fator de Necrose Tumoral alfa , Camundongos , Animais , Interferon gama , Citocinas , Regeneração , Anti-Inflamatórios , Músculos
10.
Int J Infect Dis ; 124: 45-48, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36087642

RESUMO

OBJECTIVES: Since April 2022, another wave of the Omicron epidemic has struck Taiwanese society, and children with severe neurological complications have been reported frequently. A few cases even developed acute fulminant encephalitis. To investigate the possible causes of the increased incidence of such complications in Taiwan, we reviewed several cases of pediatric patients with severe neurological symptoms. METHODS: We collected the medical records of pediatric patients with COVID-19 infection who presented with severe neurological symptoms. The COVID-19 infection was diagnosed by nasal swab reverse transcriptase-polymerase chain reaction. The remaining samples were sent for whole genome sequencing and spike (S) protein amino acid variation mapping. RESULTS: The increase of several inflammatory markers was observed in all patients included in this study. However, none of the cerebrospinal fluid samples tested positive for SARS-CoV-2. The result of whole genome sequencing showed that all the sequences belonged to the lineage BA.2.3.7. However, the sequences had a K97E mutation in the S protein that differed from other BA.2.3.7 lineage strains, which was located at the S protein N-terminal domain. CONCLUSION: The new mutation in the S protein, which had not previously been observed but was discovered in this study, potentially explains the sudden increase in incidence of extremely adverse neurological symptoms in pediatric patients.


Assuntos
COVID-19 , Humanos , Criança , COVID-19/diagnóstico , SARS-CoV-2/genética , Taiwan/epidemiologia , Genoma Viral , Estado Terminal
11.
Aging (Albany NY) ; 14(11): 4624-4633, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35657641

RESUMO

Since the late 2020, the evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern has been characterized by the emergence of spike protein mutations, and these variants have become dominant worldwide. The gold standard SARS-CoV-2 diagnosis protocol requires two complex processes, namely, RNA extraction and real-time reverse transcriptase polymerase chain reaction (RT-PCR). There is a need for a faster, simpler, and more cost-effective detection strategy that can be utilized worldwide, especially in developing countries. We propose the novel use of direct RT-qPCR, which does not require RNA extraction or a preheating step. For the detection, retrospectively, we used 770 clinical nasopharyngeal swabs, including positive and negative samples. The samples were subjected to RT-qPCR in the N1 and E genes using two different thermocyclers. The limit of detection was 30 copies/reaction for N1 and 60 copies/reaction for E. Analytical sensitivity was assessed for the developed direct RT-qPCR; the sensitivity was 95.69%, negative predictive value was 99.9%, accuracy of 99.35%, and area under the curve was 0.978. This novel direct RT-qPCR diagnosis method without RNA extraction is a reliable and high-throughput alternative method that can significantly save cost, labor, and time during the coronavirus disease 2019 pandemic.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Teste para COVID-19 , Técnicas de Laboratório Clínico/métodos , Análise Custo-Benefício , Humanos , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Estudos Retrospectivos , SARS-CoV-2/genética , Sensibilidade e Especificidade
12.
Sci Transl Med ; 14(651): eabg7504, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35767650

RESUMO

The role of tissue-resident macrophages during tissue regeneration or fibrosis is not well understood, mainly due to the lack of a specific marker for their identification. Here, we identified three populations of skeletal muscle-resident myelomonocytic cells: a population of macrophages positive for lymphatic vessel endothelial receptor 1 (LYVE1) and T cell membrane protein 4 (TIM4 or TIMD4), a population of LYVE1-TIM4- macrophages, and a population of cells likely representing dendritic cells that were positive for CD11C and major histocompatibility complex class II (MHCII). Using a combination of parabiosis and lineage-tracing experiments, we found that, at steady state, TIM4- macrophages were replenished from the blood, whereas TIM4+ macrophages locally self-renewed [self-renewing resident macrophages (SRRMs)]. We further showed that Timd4 could be reliably used to distinguish SRRMs from damage-induced infiltrating macrophages. Using a colony-stimulating factor 1 receptor (CSF1R) inhibition/withdrawal approach to specifically deplete SRRMs, we found that SRRMs provided a nonredundant function in clearing damage-induced apoptotic cells early after extensive acute injury. In contrast, in chronic mild injury as seen in a mouse model of Duchenne muscular dystrophy, depletion of both TIM4-- and TIM4+-resident macrophage populations through long-term CSF1R inhibition changed muscle fiber composition from damage-sensitive glycolytic fibers toward damage-resistant glycolytic-oxidative fibers, thereby protecting muscle against contraction-induced injury both ex vivo and in vivo. This work reveals a previously unidentified role for resident macrophages in modulating tissue metabolism and may have therapeutic potential given the ongoing clinical testing of CSF1R inhibitors.


Assuntos
Macrófagos , Músculo Esquelético , Distrofias Musculares , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos , Animais , Macrófagos/metabolismo , Macrófagos/patologia , Proteínas de Membrana/metabolismo , Camundongos , Monócitos/metabolismo , Monócitos/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofias Musculares/tratamento farmacológico , Distrofias Musculares/metabolismo , Distrofias Musculares/patologia , Receptores Proteína Tirosina Quinases/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Proteínas de Transporte Vesicular/metabolismo
13.
Infect Drug Resist ; 15: 595-603, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237052

RESUMO

PURPOSE: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent behind coronavirus disease-2019 (COVID-19). Single-plex reverse transcription-polymerase chain reaction (RT-PCR)-based assays are widely used for COVID-19 detection but exhibit decreased sensitivity and specificity in detecting the rapidly spreading SARS-CoV-2 variants; in contrast, multiplex RT-PCR reportedly yields better results. Here, we aimed at comparatively analyzing the clinical performance of the LabTurboTM AIO COVID-19 RNA testing kit, a multiplex quantitative RT-PCR kit, including a three-target (E, N1, and RNase P), single-reaction, triplex assay used for SARS-CoV-2 detection, with that of the WHO-recommended RT-PCR assay. MATERIALS AND METHODS: Residual, natural, nasopharyngeal swabs obtained from universal transport medium specimens at SARS-CoV-2 testing centers (n = 414) were collected from May to October 2021. For SARS-CoV-2 qRT-PCR, total viral nucleic acid was extracted. The limit of detection (LOD) and the comparative clinical performances of the LabTurboTM AIO COVID-19 RNA kit and the WHO-recommended RT-PCR assay were assessed. Statistical analysis of the correlation was performed and results with R2 values >0.9 were considered to be highly correlated. RESULTS: The LOD of the LabTurboTM AIO COVID-19 RNA kit was 9.4 copies/reaction for the target genes N1 and E. The results obtained from 102 SARS-CoV-2-positive and 312 SARS-CoV-2-negative samples showed 100% correlation with previous WHO-recommended RT-PCR assay results. CONCLUSION: Multiplex qRT-PCR is a critical tool for detecting unknown pathogens and employs multiple target genes. The LabTurboTM AIO COVID-19 RNA testing kit provides an effective and efficient assay for SARS-CoV-2 detection and is highly compatible with SARS-CoV-2 variants.

14.
Microbiol Spectr ; 10(1): e0251321, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35196812

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread worldwide. Many variants of SARS-CoV-2 have been reported, some of which have increased transmissibility and/or reduced susceptibility to vaccines. There is an urgent need for variant phenotyping for epidemiological surveillance of circulating lineages. Whole-genome sequencing is the gold standard for identifying SARS-CoV-2 variants, which constitutes a major bottleneck in developing countries. Methodological simplification could increase epidemiological surveillance feasibility and efficiency. We designed a novel multiplex real-time reverse transcriptase PCR (RT-PCR) to detect SARS-CoV-2 variants with S gene mutations. This multiplex PCR typing method was established to detect 9 mutations with specific primers and probes (ΔHV 69/70, K417T, K417N, L452R, E484K, E484Q, N501Y, P681H, and P681R) against the receptor-binding domain of the spike protein of SARS-CoV-2 variants. In silico analyses showed high specificity of the assays. Variants of concern (VOC) typing results were found to be highly specific for our intended targets, with no cross-reactivity observed with other upper respiratory viruses. The PCR-based typing methods were further validated using whole-genome sequencing and a commercial kit that was applied to clinical samples of 250 COVID-19 patients from Taiwan. The screening of these samples allowed the identification of epidemic trends by time intervals, including B.1.617.2 in the third Taiwan wave outbreak. This PCR typing strategy allowed the detection of five major variants of concern and also provided an open-source PCR assay which could rapidly be deployed in laboratories around the world to enhance surveillance for the local emergence and spread of B.1.1.7, B.1.351, P.1, and B.1.617.2 variants and of four Omicron mutations on the spike protein (ΔHV 69/70, K417N, N501Y, P681H). IMPORTANCE COVID-19 has spread globally. SARS-CoV-2 variants of concern (VOCs) are leading the next waves of the COVID-19 pandemic. Previous studies have pointed out that these VOCs may have increased infectivity, have reduced vaccine susceptibility, change treatment regimens, and increase the difficulty of epidemic prevention policy. Understanding SARS-CoV-2 variants remains an issue of concern for all local government authorities and is critical for establishing and implementing effective public health measures. A novel SARS-CoV-2 variant identification method based on a multiplex real-time RT-PCR was developed in this study. Five SARS-CoV-2 variants (Alpha, Beta, Gamma, Delta, and Omicron) were identified simultaneously using this method. PCR typing can provide rapid testing results with lower cost and higher feasibility, which is well within the capacity for any diagnostic laboratory. Characterizing these variants and their mutations is important for tracking SAR-CoV-2 evolution and is conducive to public infection control and policy formulation strategies.


Assuntos
COVID-19/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , SARS-CoV-2/classificação , COVID-19/epidemiologia , Monitoramento Epidemiológico , Humanos , Mutação , Pandemias , Saúde Pública , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/genética , Taiwan , Sequenciamento Completo do Genoma
15.
J Microbiol Immunol Infect ; 55(6 Pt 1): 1069-1075, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34538568

RESUMO

BACKGROUND/PURPOSE: Mass screening for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is important to prevent the spread of coronavirus disease 2019 (COVID-19). Pooling samples can increase the number of tests processed. LabTurbo AIO 48 is an automated platform that allows ribonucleic acid extraction and sample analysis on the same instrument. We created a novel pooling assay on this platform for SARS-CoV-2 detection and demonstrated that the pooling strategy increases testing capacity without affecting accuracy and sensitivity. METHODS: Comparative limit of detection (LoD) assessment was performed on the LabTurbo AIO 48 platform and the current standard detection system based on real-time reverse transcription polymerase chain reaction (rRT-PCR) using 55 clinically positive samples. An additional 330 primary clinical samples were assessed. RESULTS: Six samples pooled into one reaction tube were detected in approximately 2.5 h using the World Health Organization rRT-PCR protocol. LabTurbo AIO 48 also demonstrated a higher throughput than our reference rRT-PCR assay, with an LoD of 1000 copies/mL. The overall percentage agreement between the methods for the 330 samples was 100%. CONCLUSION: We created a novel multi-specimen pooling assay using LabTurbo AIO 48 for the robust detection of SARS-CoV-2, allowing high-throughput results; this assay will aid in better control and prevention of COVID-19. The diagnostic assay was cost-effective and time-efficient; thus, the pooling strategy is a practical and effective method for diagnosing large quantities of specimens without compromising precision.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Teste para COVID-19 , Manejo de Espécimes/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sensibilidade e Especificidade , RNA Viral/genética
16.
Int J Infect Dis ; 114: 112-114, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34758391

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic. Diagnostic testing for SARS-CoV-2 has continuously been challenged due to several variants with diverse spike (S) and nucleocapsid (N) protein mutations []. SARS-CoV-2 variant proliferation potentially affects N protein-targeted rapid antigen testing. In this study, rapid antigen and reverse transcription PCR (RT-PCR) tests were performed simultaneously in patients with suspected coronavirus disease 2019 (COVID-19). Direct whole genome sequencing was performed to determine the N protein variations, and the viral assemblies were uploaded to GISAID. The genomes were then compared with those of global virus strains from GISAID. These isolates belonged to the B.1.1.7 variant, exhibiting several amino acid substitutions, including D3L, R203K, G204R, and S235F N protein mutations. The T135I mutation was also identified in one variant case in which the rapid antigen test and RT-PCR test were discordantly negative and positive, respectively. These findings suggest that the variants undetected by the Panbio COVID-19 rapid antigen test may be due to the T135I mutation in the N protein, posing a potential diagnostic risk for commercially available antigen tests. Hence, we recommend concomitant paired rapid antigen tests and molecular diagnostic methods to detect SARS-CoV-2. False-negative results could be rapidly corrected using confirmatory RT-PCR results to prevent future COVID-19 outbreaks.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Mutação , Nucleocapsídeo/genética , Sensibilidade e Especificidade
17.
Int J Infect Dis ; 115: 30-34, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34843956

RESUMO

OBJECTIVES: With the emergence of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) B.1.1.7 lineage in the ongoing coronavirus disease 2019 (COVID-19) pandemic, Taiwan confronted a COVID-19 flare up in May 2021. Large-scale, accurate, affordable and rapid diagnostic tests such as the lateral flow assay can help to prevent community transmission, but their performance characteristics in real-world conditions and relevant subpopulations remain unclear. METHODS: The COVID-19 Antigen Rapid Test Kit (Eternal Materials, New Taipei City, Taiwan) was used in a high-throughput community testing site; the paired reverse transcription polymerase chain reaction (RT-PCR) results served as a reference for sensitivity and specificity calculations. RESULTS: Of 2096 specimens tested using the rapid antigen test, 70 (3.33%) were positive and 2026 (96.7%) were negative. This clinical performance was compared with the RT-PCR results. The sensitivity and specificity of the rapid antigen test were 76.39% [95% confidence interval (CI) 64.91-85.60%] and 99.26% (95% CI 98.78-99.58%), respectively, with high sensitivity in subjects with cycle threshold values ≤24. Further, the rapid antigen test detected the SARS-CoV-2 B.1.1.7 lineage effectively. CONCLUSIONS: Considering the short turnaround times and lower costs, this simple SARS-CoV-2 antigen detection test for rapid screening combined with RT-PCR as a double confirmatory screening tool can facilitate the prevention of community transmission during COVID-19 emergencies.


Assuntos
COVID-19 , SARS-CoV-2 , Antígenos Virais , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sensibilidade e Especificidade , Taiwan/epidemiologia
18.
Aging (Albany NY) ; 13(23): 24931-24942, 2021 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-34897035

RESUMO

Since the Coronavirus 19 (COVID-19) pandemic, several SARS-CoV-2 variants of concern (SARS-CoV-2 VOC) have been reported. The B.1.1.7 variant has been associated with increased mortality and transmission risk. Furthermore, cluster and possible co-infection cases could occur in the next influenza season or COVID-19 pandemic wave, warranting efficient diagnosis and treatment decision making. Here, we aimed to detect SARS-CoV-2 and other common respiratory viruses using multiplex RT-PCR developed on the LabTurbo AIO 48 open system. We performed a multicenter study to evaluate the performance and analytical sensitivity of the LabTurbo AIO 48 system for SARS-CoV-2, influenza A/B, and respiratory syncytial virus (RSV) using 652 nasopharyngeal swab clinical samples from patients. The LabTurbo AIO 48 system demonstrated a sensitivity of 9.4 copies/per PCR for N2 of SARS-CoV-2; 24 copies/per PCR for M of influenza A and B; and 24 copies/per PCR for N of RSV. The assay presented consistent performance in the multicenter study. The multiplex RT-PCR applied on the LabTurbo AIO 48 open platform provided highly sensitive, robust, and accurate results and enabled high-throughput detection of B.1.1.7, influenza A/B, and RSV with short turnaround times. Therefore, this automated molecular diagnostic assay could enable streamlined testing if COVID-19 becomes a seasonal disease.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , Influenza Humana/diagnóstico , Reação em Cadeia da Polimerase Multiplex/métodos , Infecções por Vírus Respiratório Sincicial/diagnóstico , Adulto , Idoso , COVID-19/virologia , Feminino , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A/isolamento & purificação , Influenza Humana/virologia , Betainfluenzavirus/genética , Betainfluenzavirus/isolamento & purificação , Masculino , Pessoa de Meia-Idade , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sinciciais Respiratórios/genética , Vírus Sinciciais Respiratórios/isolamento & purificação , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Sensibilidade e Especificidade , Adulto Jovem
19.
Diagnostics (Basel) ; 11(9)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34573881

RESUMO

OBJECTIVE: To compare the metabolites of in vivo 1H- MRS in pancreatic cancer with normal pancreas, and correlate these metabolites with Positron Emission Tomography (PET) metabolic activity, clinical stages, and survival outcomes. METHODS: The prospective study included 58 patients (mean age 62.7 ± 12.1 years, range 34-81 years; 36 men, 22 women) with pathological proof of pancreatic adenocarcinoma, and all of them received 18F-fluorodeoxyglucose (FDG) PET/MRI before treatment. The single-voxel MRS with a point-resolved selective spectroscopy sequence was used to measure metabolites (creatine, Glx (glutamine and glutamate), N-acetylaspartate (NAA), and lipid) of pancreatic cancer and adjacent normal parenchyma, respectively. FDG-PET parameters included SUVmax, metabolic tumor volume (MTV), and total lesion glycolysis (TLG). Non-parametric tests were used to evaluate the differences of MRS metabolites between pancreatic cancer and those in normal pancreas, and their correlation with PET parameters and clinical stages. The correlation with progression-free survival (PFS) and overall survival (OS) was measured using the Kaplan-Meier and Cox proportional hazard models. RESULTS: When compared with normal pancreas, the Glx, NAA, and lipid levels were significantly decreased in pancreatic cancer (all p < 0.05). Creatine, Glx, and lipid levels were all inversely correlated with both MTV (rho = -0.405~-0.454) and TLG (rho = -0.331~-0.441). For correlation with clinical stages, lower lipid levels were found in patients with T4 (vs.

20.
PeerJ ; 9: e11991, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557346

RESUMO

BACKGROUND: There is a global pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Information on viral genomics is crucial for understanding global dispersion and for providing insight into viral pathogenicity and transmission. Here, we characterized the SARS-CoV-2 genomes isolated from five travelers who returned to Taiwan from the United States of America (USA) between March and April 2020. METHODS: Haplotype network analysis was performed using genome-wide single-nucleotide variations to trace potential infection routes. To determine the genetic variations and evolutionary trajectory of the isolates, the genomes of isolates were compared to those of global virus strains from GISAID. Pharyngeal specimens were confirmed to be SARS-CoV-2-positive by RT-PCR. Direct whole-genome sequencing was performed, and viral assemblies were subsequently uploaded to GISAID. Comparative genome sequence and single-nucleotide variation analyses were performed. RESULTS: The D614G mutation was identified in imported cases, which separated into two clusters related to viruses originally detected in the USA. Our findings highlight the risk of spreading SARS-CoV-2 variants through air travel and the need for continued genomic tracing for the epidemiological investigation and surveillance of SARS-CoV-2 using viral genomic data. CONCLUSIONS: Continuous genomic surveillance is warranted to trace virus circulation and evolution in different global settings during future outbreaks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...