Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol Lett ; 11(5): 410-417, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38752195

RESUMO

In the United States, the growing number of people experiencing homelessness has become a socioeconomic crisis with public health ramifications, recently exacerbated by the COVID-19 pandemic. We hypothesized that the environmental surveillance of flood control infrastructure may be an effective approach to understand the prevalence of infectious disease. From December 2021 through July 2022, we tested for SARS-CoV-2 RNA from two flood control channels known to be impacted by unsheltered individuals residing in upstream tunnels. Using qPCR, we detected SARS-CoV-2 RNA in these environmental water samples when significant COVID-19 outbreaks were occurring in the surrounding community. We also performed whole genome sequencing to identify SARS-CoV-2 lineages. Variant compositions were consistent with those of geographically and temporally matched municipal wastewater samples and clinical specimens. However, we also detected 10 of 22 mutations specific to the Alpha variant in the environmental water samples collected during January 2022-one year after the Alpha infection peak. We also identified mutations in the spike gene that have never been identified in published reports. Our findings demonstrate that environmental surveillance of flood control infrastructure may be an effective tool to understand public health conditions among unsheltered individuals-a vulnerable population that is underrepresented in clinical surveillance data.

2.
medRxiv ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38699326

RESUMO

Genome sequencing from wastewater has emerged as an accurate and cost-effective tool for identifying SARS-CoV-2 variants. However, existing methods for analyzing wastewater sequencing data are not designed to detect novel variants that have not been characterized in humans. Here, we present an unsupervised learning approach that clusters co-varying and time-evolving mutation patterns leading to the identification of SARS-CoV-2 variants. To build our model, we sequenced 3,659 wastewater samples collected over a span of more than two years from urban and rural locations in Southern Nevada. We then developed a multivariate independent component analysis (ICA)-based pipeline to transform mutation frequencies into independent sources with co-varying and time-evolving patterns and compared variant predictions to >5,000 SARS-CoV-2 clinical genomes isolated from Nevadans. Using the source patterns as data-driven reference "barcodes", we demonstrated the model's accuracy by successfully detecting the Delta variant in late 2021, Omicron variants in 2022, and emerging recombinant XBB variants in 2023. Our approach revealed the spatial and temporal dynamics of variants in both urban and rural regions; achieved earlier detection of most variants compared to other computational tools; and uncovered unique co-varying mutation patterns not associated with any known variant. The multivariate nature of our pipeline boosts statistical power and can support accurate and early detection of SARS-CoV-2 variants. This feature offers a unique opportunity for novel variant and pathogen detection, even in the absence of clinical testing.

3.
eNeuro ; 11(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38527805

RESUMO

Laboratory outreach programs for K-12 students in the United States from 2020 to 2022 were suspended or delayed due to COVID-19 restrictions. While Southern Nevada also observed similar closures for onsite programs, we and others hypothesized that in-person laboratory activities could be prioritized after increasing vaccine doses were available to the public and masking was encouraged. Here, we describe how the Laboratory of Neurogenetics and Precision Medicine at the University of Nevada Las Vegas (UNLV) collaborated with administrators from a local school district to conduct training activities for high school students during the COVID-19 pandemic. The Science Education for the Youth (SEFTY) program's curriculum was constructed to incorporate experiential learning, fostering collaboration and peer-to-peer knowledge exchange. Leveraging neuroscience tools from our UNLV laboratory, we engaged with 117 high school applicants from 2021 to 2022. Our recruitment efforts yielded a diverse cohort, with >41% Pacific Islander and Asian students, >9% African American students, and >12% multiracial students. We assessed the impact of the SEFTY program through pre- and postassessment student evaluations, revealing a significant improvement of 20.3% in science proficiency (p < 0.001) after participating in the program. Collectively, our laboratory curriculum offers valuable insights into the capacity of an outreach program to actively foster diversity and cultivate opportunities for academic excellence, even in the challenging context of a global pandemic.


Assuntos
COVID-19 , Pandemias , Humanos , Adolescente , Estados Unidos , Nevada , COVID-19/prevenção & controle , Estudantes , Currículo
4.
medRxiv ; 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38352613

RESUMO

Evaluating drug use within populations in the United States poses significant challenges due to various social, ethical, and legal constraints, often impeding the collection of accurate and timely data. Here, we aimed to overcome these barriers by conducting a comprehensive analysis of drug consumption trends and measuring their association with socioeconomic and demographic factors. From May 2022 to April 2023, we analyzed 208 wastewater samples from eight sampling locations across six wastewater treatment plants in Southern Nevada, covering a population of 2.4 million residents with 50 million annual tourists. Using bi-weekly influent wastewater samples, we employed mass spectrometry to detect 39 analytes, including pharmaceuticals and personal care products (PPCPs) and high risk substances (HRS). Our results revealed a significant increase over time in the level of stimulants such as cocaine (pFDR=1.40×10-10) and opioids, particularly norfentanyl (pFDR =1.66×10-12), while PPCPs exhibited seasonal variation such as peak usage of DEET, an active ingredient in insect repellents, during the summer (pFDR =0.05). Wastewater from socioeconomically disadvantaged or rural areas, as determined by Area Deprivation Index (ADI) and Rural-Urban Commuting Area Codes (RUCA) scores, demonstrated distinct overall usage patterns, such as higher usage/concentration of HRS, including cocaine (p=0.05) and norfentanyl (p=1.64×10-5). Our approach offers a near real-time, comprehensive tool to assess drug consumption and personal care product usage at a community level, linking wastewater patterns to socioeconomic and demographic factors. This approach has the potential to significantly enhance public health monitoring strategies in the United States.

5.
bioRxiv ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38370644

RESUMO

Laboratory outreach programs for K-12 students in the United States from 2020-2022 were suspended or delayed due to COVID-19 restrictions. While Southern Nevada also observed similar closures for onsite programs, we and others hypothesized that in-person laboratory activities could be prioritized after increasing vaccine doses were available to the public and masking was encouraged. Here, we describe how the Laboratory of Neurogenetics and Precision Medicine at the University of Nevada Las Vegas (UNLV) collaborated with administrators from a local school district to conduct training activities for high school students during the COVID-19 pandemic. The Science Education for the Youth (SEFTY) program's curriculum was constructed to incorporate experiential learning, fostering collaboration and peer-to-peer knowledge exchange. Leveraging neuroscience tools from our UNLV laboratory, we engaged with 117 high school applicants from 2021-2022. Our recruitment efforts yielded a diverse cohort, with >41% Pacific Islander and Asian students, >9% African American students, and >12% multiracial students. We assessed the impact of the SEFTY program through pre- and post-assessment student evaluations, revealing a significant improvement of 20.3% in science proficiency ( p <0.001) after participating in the program. Collectively, our laboratory curriculum offers valuable insights into the capacity of an outreach program to actively foster diversity and cultivate opportunities for academic excellence, even in the challenging context of a global pandemic. Significance Statement: The Science Education for the Youth (SEFTY) program at UNLV successfully engaged 117 diverse high school students in neuroscience-based experiential learning, demonstrating the viability of in-person education during a pandemic. Significant improvements in science proficiency (20.3% increase) underscore the program's effectiveness in fostering academic excellence and diversity. This initiative potentially serves as a model for maintaining high-quality, inclusive science education in challenging times.

6.
Sci Total Environ ; 872: 162058, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36758698

RESUMO

Real-time surveillance of infectious diseases at schools or in communities is often hampered by delays in reporting due to resource limitations and infrastructure issues. By incorporating quantitative PCR and genome sequencing, wastewater surveillance has been an effective complement to public health surveillance at the community and building-scale for pathogens such as poliovirus, SARS-CoV-2, and even the monkeypox virus. In this study, we asked whether wastewater surveillance programs at elementary schools could be leveraged to detect RNA from influenza viruses shed in wastewater. We monitored for influenza A and B viral RNA in wastewater from six elementary schools from January to May 2022. Quantitative PCR led to the identification of influenza A viral RNA at three schools, which coincided with the lifting of COVID-19 restrictions and a surge in influenza A infections in Las Vegas, Nevada, USA. We performed genome sequencing of wastewater RNA, leading to the identification of a 2021-2022 vaccine-resistant influenza A (H3N2) 3C.2a1b.2a.2 subclade. We next tested wastewater samples from a treatment plant that serviced the elementary schools, but we were unable to detect the presence of influenza A/B RNA. Together, our results demonstrate the utility of near-source wastewater surveillance for the detection of local influenza transmission in schools, which has the potential to be investigated further with paired school-level influenza incidence data.


Assuntos
COVID-19 , Vacinas contra Influenza , Influenza Humana , Humanos , Influenza Humana/genética , Águas Residuárias , Vírus da Influenza A Subtipo H3N2/genética , Nevada/epidemiologia , COVID-19/epidemiologia , SARS-CoV-2/genética , Vigilância Epidemiológica Baseada em Águas Residuárias , Vacinas contra Influenza/genética , RNA Viral , Instituições Acadêmicas
7.
JAMA Netw Open ; 6(2): e230550, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36821109

RESUMO

Importance: Interpretation of wastewater surveillance data is potentially confounded in communities with mobile populations, so it is important to account for this issue when conducting wastewater-based epidemiology (WBE). Objectives: To leverage spatial and temporal differences in wastewater whole-genome sequencing (WGS) data to quantify relative SARS-CoV-2 contributions from visitors to southern Nevada. Design, Setting, and Participants: This cross-sectional wastewater surveillance study was performed during the COVID-19 pandemic (March 2020 to February 2022) and included weekly influent wastewater samples that were analyzed by reverse transcription-quantitative polymerase chain reaction to quantify SARS-CoV-2 RNA and WGS for identification of variants of concern. This study was conducted in the Las Vegas, Nevada, metropolitan area, which is a semi-urban area with approximately 2.3 million residents and nearly 1 million weekly visitors. Samples were collected from 7 wastewater treatment plant (WWTP) locations that collectively serve the vast majority of southern Nevada (excluding the small number of septic systems) and 1 manhole serving the southern portion of the Las Vegas Strip. With Las Vegas tourism returning to prepandemic levels in 2021, it was hypothesized that visitors were contributing a disproportionate fraction of SARS-CoV-2 RNA to the largest WWTP in southern Nevada, potentially confounding efforts to estimate COVID-19 incidence in the local community through WBE. Main Outcomes and Measures: Relative SARS-CoV-2 load and variants from visitors vs the local population. Results: The Omicron BA.1 VOC was detected in the Las Vegas Strip manhole approximately 1 week before its detection at the WWTP locations (December 13, 2021) and by clinical testing (December 14, 2021). On December 13, Omicron-specific mutations represented a mean (SD) of 48.0% (4.2%) of all genomes from the Las Vegas Strip manhole and 4.1% (1.4%) of all genomes at facilities 2 and 3; by December 20, Omicron-specific mutations represented means (SD) of 82.0% (3.0%) of all genomes at the Las Vegas Strip manhole and 48.0% (2.8%) of all genomes at facilities 2 and 3, respectively. During this time, it was estimated that visitors contributed more than 60% of the SARS-CoV-2 load to the sewershed serving the Las Vegas Strip and that Omicron prevalence among visitors was 40% to 60% on December 13 and 80% to 100% on December 20th. Conclusions and Relevance: Wastewater surveillance is a valuable complement to clinical tools and can provide time-sensitive data for decision-makers and policy makers. This study represents a novel approach for quantifying the confounding effects of mobile populations on wastewater surveillance data, thereby allowing for modification of an existing WBE framework for estimating COVID-19 incidence in southern Nevada.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Águas Residuárias , Estudos Transversais , Pandemias , RNA Viral , Vigilância Epidemiológica Baseada em Águas Residuárias
8.
Sci Total Environ ; 858(Pt 3): 160024, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36356728

RESUMO

The identification of novel SARS-CoV-2 variants can predict new patterns of COVID-19 community transmission and lead to the deployment of public health resources. However, increased access to at-home antigen tests and reduced free PCR tests have recently led to data gaps for the surveillance of evolving SARS-CoV-2 variants. To overcome such limitations, we asked whether wastewater surveillance could be leveraged to detect rare variants circulating in a community before local detection in human cases. Here, we performed whole genome sequencing (WGS) of SARS-CoV-2 from a wastewater treatment plant serving Las Vegas, Nevada in April 2022. Using metrics that exceeded 100× depth at a coverage of >90 % of the viral genome, we identified a variant profile similar to the XL recombinant lineage containing 26 mutations found in BA.1 and BA.2 and three private mutations. Prompted by the discovery of this rare lineage in wastewater, we analyzed clinical COVID-19 sequencing data from Southern Nevada and identified two cases infected with the XL lineage. Taken together, our data highlight how wastewater genome sequencing data can be used to discover rare SARS-CoV-2 lineages in a community and complement local public health surveillance.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
9.
Sci Total Environ ; 853: 158577, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36087661

RESUMO

During the early phase of the COVID-19 pandemic, infected patients presented with symptoms similar to bacterial pneumonias and were treated with antibiotics before confirmation of a bacterial or fungal co-infection. We reasoned that wastewater surveillance could reveal potential relationships between reduced antimicrobial stewardship, specifically misprescribing antibiotics to treat viral infections, and the occurrence of antimicrobial resistance (AMR) in an urban community. Here, we analyzed microbial communities and AMR profiles in sewage samples from a wastewater treatment plant (WWTP) and a community shelter in Las Vegas, Nevada during a COVID-19 surge in December 2020. Using a respiratory pathogen and AMR enrichment next-generation sequencing panel, we identified four major phyla in the wastewater, including Actinobacteria, Firmicutes, Bacteroidetes and Proteobacteria. Consistent with antibiotics that were reportedly used to treat COVID-19 infections (e.g., fluoroquinolones and beta-lactams), we also measured a significant spike in corresponding AMR genes in the wastewater samples. AMR genes associated with colistin resistance (mcr genes) were also identified exclusively at the WWTP, suggesting that multidrug resistant bacterial infections were being treated during this time. We next compared the Las Vegas sewage data to local 2018-2019 antibiograms, which are antimicrobial susceptibility profile reports about common clinical pathogens. Similar to the discovery of higher levels of beta-lactamase resistance genes in sewage during 2020, beta-lactam antibiotics accounted for 51 ± 3 % of reported antibiotics used in antimicrobial susceptibility tests of 2018-2019 clinical isolates. Our data highlight how wastewater-based epidemiology (WBE) can be leveraged to complement more traditional surveillance efforts by providing community-level data to help identify current and emerging AMR threats.


Assuntos
COVID-19 , Águas Residuárias , Humanos , Águas Residuárias/microbiologia , Antibacterianos/farmacologia , Esgotos/microbiologia , COVID-19/epidemiologia , Vigilância Epidemiológica Baseada em Águas Residuárias , Colistina , Pandemias , Farmacorresistência Bacteriana/genética , beta-Lactamas , Fluoroquinolonas , Bactérias
10.
Sci Total Environ ; 835: 155410, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35469875

RESUMO

A decline in diagnostic testing for SARS-CoV-2 is expected to delay the tracking of COVID-19 variants of concern and interest in the United States. We hypothesize that wastewater surveillance programs provide an effective alternative for detecting emerging variants and assessing COVID-19 incidence, particularly when clinical surveillance is limited. Here, we analyzed SARS-CoV-2 RNA in wastewater from eight locations across Southern Nevada between March 2020 and April 2021. Trends in SARS-CoV-2 RNA concentrations (ranging from 4.3 log10 gc/L to 8.7 log10 gc/L) matched trends in confirmed COVID-19 incidence, but wastewater surveillance also highlighted several limitations with the clinical data. Amplicon-based whole genome sequencing (WGS) of 86 wastewater samples identified the B.1.1.7 (Alpha) and B.1.429 (Epsilon) lineages in December 2020, but clinical sequencing failed to identify the variants until January 2021, thereby demonstrating that 'pooled' wastewater samples can sometimes expedite variant detection. Also, by calibrating fecal shedding (11.4 log10 gc/infection) and wastewater surveillance data to reported seroprevalence, we estimate that ~38% of individuals in Southern Nevada had been infected by SARS-CoV-2 as of April 2021, which is significantly higher than the 10% of individuals confirmed through clinical testing. Sewershed-specific ascertainment ratios (i.e., X-fold infection undercounts) ranged from 1.0 to 7.7, potentially due to demographic differences. Our data underscore the growing application of wastewater surveillance in not only the identification and quantification of infectious agents, but also the detection of variants of concern that may be missed when diagnostic testing is limited or unavailable.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , RNA Viral , SARS-CoV-2/genética , Estudos Soroepidemiológicos , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
11.
Sci Total Environ ; 805: 149930, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34536875

RESUMO

In the Fall of 2020, university campuses in the United States resumed on-campus instruction and implemented wastewater monitoring for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While quantitative polymerase chain reaction (qPCR) tests were deployed successfully to detect viral RNA in wastewater across campuses, the feasibility of detecting viral variants from a residential building like a dormitory was unclear. Here, we demonstrate that wastewater surveillance from a dormitory with at least three infected students could lead to the identification of viral genomes with more than 95% coverage. Our results indicate that viral variant detection from wastewater is achievable at a dormitory and that coronavirus disease 2019 (COVID-19) wastewater surveillance programs will benefit from the implementation of viral whole genome sequencing at universities.


Assuntos
COVID-19 , Águas Residuárias , Genômica , Humanos , SARS-CoV-2 , Universidades , Vigilância Epidemiológica Baseada em Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...