Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 49(3): 1235-1246, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33398344

RESUMO

We have identified chemical probes that simultaneously inhibit cancer cell progression and an immune checkpoint. Using the computational Site Identification by Ligand Competitive Saturation (SILCS) technology, structural biology and cell-based assays, we identify small molecules that directly and selectively bind to the RNA Recognition Motif (RRM) of hnRNP A18, a regulator of protein translation in cancer cells. hnRNP A18 recognizes a specific RNA signature motif in the 3'UTR of transcripts associated with cancer cell progression (Trx, VEGF, RPA) and, as shown here, a tumor immune checkpoint (CTLA-4). Post-transcriptional regulation of immune checkpoints is a potential therapeutic strategy that remains to be exploited. The probes target hnRNP A18 RRM in vitro and in cells as evaluated by cellular target engagement. As single agents, the probes specifically disrupt hnRNP A18-RNA interactions, downregulate Trx and CTLA-4 protein levels and inhibit proliferation of several cancer cell lines without affecting the viability of normal epithelial cells. These first-in-class chemical probes will greatly facilitate the elucidation of the underexplored biological function of RNA Binding Proteins (RBPs) in cancer cells, including their effects on proliferation and immune checkpoint activation.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Ligação a RNA/antagonistas & inibidores , Animais , Antineoplásicos/uso terapêutico , Antígeno CTLA-4/genética , Antígeno CTLA-4/metabolismo , Linhagem Celular Tumoral , Humanos , Ligantes , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Ressonância Magnética Nuclear Biomolecular , Biossíntese de Proteínas , RNA/metabolismo , Motivo de Reconhecimento de RNA , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo
2.
Clin Exp Metastasis ; 37(2): 283-292, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32020377

RESUMO

We explored the role of the transcription factor, NF-κB, and its upstream kinase IKKß in regulation of migration, invasion, and metastasis of cisplatin-resistant head and neck squamous cell carcinoma (HNSCC). We showed that cisplatin-resistant HNSCC cells have a stronger ability to migrate and invade, as well as display higher IKKß/NF-κB activity compared to their parental partners. Importantly, we found that knockdown of IKKß, but not NF-κB, dramatically impaired cell migration and invasion in these cells. Consistent with this, the IKKß inhibitor, CmpdA, also inhibited cell migration and invasion. Previous studies have already shown that N-Cadherin, an epithelial-mesenchymal transition (EMT) marker, and IL-6, a pro-inflammatory cytokine, play important roles in regulation of HNSCC migration, invasion, and metastasis. We found that cisplatin-resistant HNSCC expressed higher levels of N-Cadherin and IL-6, which were significantly inhibited by CmpdA. More importantly, we showed that CmpdA treatment dramatically abated cisplatin-resistant HNSCC cell metastasis to lungs in a mouse model. Our data demonstrated the crucial role of IKKß in control of migration, invasion, and metastasis, and implicated that targeting IKKß may be a potential therapy for cisplatin-resistant metastatic HNSCC.


Assuntos
Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Quinase I-kappa B/antagonistas & inibidores , Neoplasias Pulmonares/prevenção & controle , NF-kappa B/metabolismo , Oxazinas/uso terapêutico , Piridinas/uso terapêutico , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Técnicas de Silenciamento de Genes , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Camundongos , Invasividade Neoplásica/genética , Invasividade Neoplásica/prevenção & controle , Metástase Neoplásica/genética , Metástase Neoplásica/prevenção & controle , Oxazinas/farmacologia , Piridinas/farmacologia , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/secundário , Ensaios Antitumorais Modelo de Xenoenxerto
3.
EBioMedicine ; 40: 231-239, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30686755

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) remains one of the most lethal, rarely cured cancers, despite decades of active development of AML therapeutics. Currently, the 5-year survival of AML patients is about 30% and for elderly patients, the rate drops to <10%. About 30% of AML patients harbor an activating mutation in the tyrosine kinase domain (TKD) of Fms-Like Tyrosine kinase 3 (FLT3) or a FLT3 internal tandem duplication (FLT3-ITD). Inhibitors of FLT3, such as Rydapt that was recently approved by the FDA, have shown good initial response but patients often relapse due to secondary mutations in the FLT3 TKD, like D835Y and F691 L mutations. METHODS: Alkynyl aminoisoquinoline and naphthyridine compounds were synthesized via Sonogashira coupling. The compounds were evaluated for their in vitro and in vivo effects on leukemia growth. FINDINGS: The compounds inhibited FLT3 kinase activity at low nanomolar concentrations. The lead compound, HSN431, also inhibited Src kinase activity. The compounds potently inhibited the viability of MV4-11 and MOLM-14 AML cells with IC50 values <1 nM. Furthermore, the viability of drug-resistant AML cells harboring the D835Y and F691 L mutations were potently inhibited. In vivo efficacy studies in mice demonstrated that the compounds could drastically reduce AML proliferation in mice. INTERPRETATION: Compounds that inhibit FLT3 and downstream targets like Src (for example HSN431) are good leads for development as anti-AML agents. FUND: Purdue University, Purdue Institute for Drug Discovery (PIDD), Purdue University Center for Cancer Research, Elks Foundation and NIH P30 CA023168.


Assuntos
Antineoplásicos/farmacologia , Isoquinolinas/farmacologia , Naftiridinas/farmacologia , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Isoquinolinas/química , Leucemia Mieloide Aguda , Camundongos , Estrutura Molecular , Mutação , Naftiridinas/química , Inibidores de Proteínas Quinases/farmacologia , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo
4.
J Clin Oncol Res ; 5(2)2017.
Artigo em Inglês | MEDLINE | ID: mdl-30417086

RESUMO

Radiotherapy (RT) has long been known to be immunogenic. Mounting preclinical data demonstrate a synergistic anti-tumor effect when RT is used in combination with immune check point inhibitors (ICI). However, it is unclear how to best integrate RT with an ICI (i.e. dose fractionation, sequence, etc.). Here we explored the concept that RT delivered as an in situ tumor vaccine sequentially to separate tumors over time might stimulate more potent and rapid antitumor immune response than RT delivered to only one tumor. In essence, radiation to a second tumor could be likened to giving a vaccine "booster shot". Mice bearing pancreatic tumors in three different sites were injected with anti-PD-L1 antibody and exposed to three daily consecutive fractions of 4 Gy each at one or two sites with a one week interval. Our data indicate that delivering an RT to one tumor followed by an RT "booster shot" to a second tumor, compared to treating only one tumor with RT, significantly reduced tumor growth at a third non-irradiated site. This abscopal effect to the non-irradiated site was observed earlier (day 9) in mice that received RT to two tumors versusa single tumor (day 17). Decreased growth of the non-irradiated tumor correlated with a transient increase of the CD4/CD8 ratio in the tumor, increase myeloid-derived suppressor cells and tumor associated macrophages in the draining lymph nodes. These data warrant further exploration of sequentially treating multiple lesions with RT and ICI with the intent of generating a robust anti-tumor immune response.

5.
Oncotarget ; 7(9): 10578-93, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26824423

RESUMO

The heterogenous ribonucleoprotein A18 (hnRNP A18) promotes tumor growth by coordinating the translation of selected transcripts associated with proliferation and survival. hnRNP A18 binds to and stabilizes the transcripts of pro-survival genes harboring its RNA signature motif in their 3'UTRs. hnRNP A18 binds to ATR, RPA, TRX, HIF-1α and several protein translation factor mRNAs on polysomes and increases de novo protein translation under cellular stress. Most importantly, down regulation of hnRNP A18 decreases proliferation, invasion and migration in addition to significantly reducing tumor growth in two mouse xenograft models, melanoma and breast cancer. Moreover, tissue microarrays performed on human melanoma, prostate, breast and colon cancer indicate that hnRNP A18 is over expressed in 40 to 60% of these malignant tissue as compared to normal adjacent tissue. Immunohistochemistry data indicate that hnRNP A18 is over expressed in the stroma and hypoxic areas of human tumors. These data thus indicate that hnRNP A18 can promote tumor growth in in vivo models by coordinating the translation of pro-survival transcripts to support the demands of proliferating cells and increase survival under cellular stress. hnRNP A18 therefore represents a new target to selectively inhibit protein translation in tumor cells.


Assuntos
Neoplasias da Mama/patologia , Proliferação de Células/genética , Neoplasias do Colo/patologia , Melanoma/patologia , Neoplasias da Próstata/patologia , Biossíntese de Proteínas/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Sobrevivência Celular/genética , Neoplasias do Colo/genética , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Melanoma/genética , Camundongos , Camundongos Nus , Invasividade Neoplásica/genética , Neoplasias da Próstata/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Proteína de Replicação A/metabolismo , Tiorredoxinas/metabolismo
6.
Radiat Res ; 184(2): 151-60, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26207686

RESUMO

Whole-abdominal radiotherapy (WART) is a primary method for managing gastrointestinal cancers that have disseminated into intra-abdominal tissues. While effective, this approach is limited because of the increased toxicity to normal tissue associated with combined WART and full-dose chemotherapy regimens. Recent studies have demonstrated a survival advantage in a novel treatment paradigm that allows for the safe use of full-dose systemic chemotherapy in combination with low-dose fractionated radiotherapy (LDFRT). Traditionally, radiation doses greater than 120 cGy have been used in radiotherapy because lower doses were thought to be ineffective for tumor therapy. However, we now know that LDFRT can produce hyper-radiosensitivity (HRS), a phenomenon where cells undergo apoptosis at radiation doses as low as 15 cGy, in a number of proliferating cells. The objectives of our current study were to determine whether LDFRT can induce HRS in gastrointestinal cancer cells and to identify biomarkers of chemopotentiation by LDFRT. Our data indicate that three consecutive daily fractions of 15 cGy produced HRS in gastric cancer cells and potentiated a modified regimen of docetaxel, cisplatin and 5'-fluorouracil (mDCF). Colony survival assays indicated that 15 cGy was sufficient to kill 90% of the cells when LDFRT was combined with mDCF whereas a dose almost 10 times higher (135 cGy) was needed to achieve the same rate when using conventional radiotherapy alone. RT(2) PCR Profiler™ array analysis indicated that this combined regimen upregulated dual oxidase 2 (DUOX2), an enzyme functioning in the production of hydrogen peroxide, without upregulating genes involved in DNA repair. Moreover, downregulation of DUOX2 increased radioresistance at every radiation dose tested. In addition, our data indicate that reactive oxygen species (ROS) increase up to 3.5-fold in cells exposed to LDFRT and mDCF. Furthermore, inhibition of NADPH oxidase abrogated the killing efficiency of this combined regimen. Taken together these data suggest that chemopotentiation by LDFRT in gastric cancer cells may be due, at least in part, to increased ROS production (DUOX2) without upregulation of the DNA repair machinery. These data thus provide a rationale for further explorations of potential clinical applications of LDFRT, such as in WART, as a chemopotentiator for advanced and metastatic gastric cancers.


Assuntos
NADPH Oxidases/biossíntese , Tolerância a Radiação/genética , Radiografia Abdominal/efeitos adversos , Neoplasias Gástricas/radioterapia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Fracionamento da Dose de Radiação , Oxidases Duais , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , NADPH Oxidases/genética , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia
7.
Biochem J ; 446(1): 113-23, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22646166

RESUMO

Survivin, a member of the IAP (inhibitor of apoptosis protein) family, plays important roles in maintaining cellular homoeostasis and regulating cell-cycle progression. This IAP is overexpressed in oesophageal cancer cells, leading to uncontrolled cell growth and resistance to apoptosis. CUG-BP1 (CUG-binding protein 1) is an RNA-binding protein that regulates the stability and translational efficiency of target mRNAs. In the present paper, we report that CUG-BP1 is overexpressed in oesophageal cancer cell lines and human oesophageal cancer specimens. CUG-BP1 associates with the 3'-untranslated region of survivin mRNA, thereby stabilizing the transcript and elevating its expression in oesophageal cancer cells. Our results show that overexpression of CUG-BP1 in oesophageal epithelial cells results in increased survivin mRNA stability and consequently survivin protein expression. Conversely, silencing CUG-BP1 in oesophageal cancer cells destabilizes survivin mRNA, lowering the level of survivin protein. In addition, we have found that altering CUG-BP1 expression modulates susceptibility to chemotherapy-induced apoptosis. Overexpression of CUG-BP1 in oesophageal epithelial cells increases resistance to apoptosis, whereas silencing CUG-BP1 makes oesophageal cancer cells more susceptible to chemotherapy-induced apoptosis. Co-transfection experiments with small interfering RNA directed against survivin suggest that the anti-apoptotic role for CUG-BP1 is not entirely dependent on its effect on survivin expression.


Assuntos
Neoplasias Esofágicas/genética , Proteínas Inibidoras de Apoptose/genética , Estabilidade de RNA , Proteínas de Ligação a RNA/metabolismo , Regiões 3' não Traduzidas , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas CELF1 , Camptotecina/farmacologia , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Neoplasias Esofágicas/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , Proteínas de Ligação a RNA/genética , Survivina
8.
J Gastrointest Dig Syst ; 2(Suppl 7)2012 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25237589

RESUMO

The epithelium of gastrointestinal (GI) mucosa has the most rapid turnover rate of any tissue in the body and its integrity is preserved through the dynamic balance between cell migration, proliferation, growth arrest and apoptosis. To maintain tissue homeostasis of the GI mucosa, the rates of epithelial cell division and apoptosis must be highly regulated by various extracellular and intracellular factors including cellular polyamines. Natural polyamines spermidine, spermine and their precursor putrescine, are organic cations in eukaryotic cells and are implicated in the control of multiple signaling pathways and distinct cellular functions. Normal intestinal epithelial growth depends on the available supply of polyamines to the dividing cells in the crypts, and polyamines also regulate intestinal epithelial cell (IEC) apoptosis. Although the specific molecular processes controlled by polyamines remains to be fully defined, increasing evidence indicates that polyamines regulate intestinal epithelial integrity by modulating the expression of various growth-related genes. In this review, we will extrapolate the current state of scientific knowledge regarding the roles of polyamines in gut mucosal homeostasis and highlight progress in cellular and molecular mechanisms of polyamines and their potential clinical applications.

9.
Int J Clin Exp Med ; 4(4): 299-308, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22140601

RESUMO

BACKGROUND: Intestinal epithelial cells (IECs) within crypts continuously divide and differentiate as they migrate up towards the luminal surface of the mucosa. With the onset of differentiation, IECs lose their proliferative potential, but the exact mechanism remains unknown. This current study examined the involvement of the TGF-ß signaling pathway in this process. METHODS: Studies were conducted in the IEC-6 cell line derived from rat small intestinal crypt cells. Cell differentiation was induced by forced expression of the Cdx2 gene, a transcription factor responsible for controlling intestinal epithelial cell differentiation. RESULTS: Forced expression of the Cdx2 gene in stable Cdx2-transfected IEC-6 cells resulted in a differentiated phenotype as indicated by morphological features and increased expression of sucrase-isomaltase. Levels of TGF-ß type I receptor (TGFß-RI) and TGF-ß type II receptor (TGFß-RII) increased in these differentiated epithelial cells. The induced TGFß-RI and TGFß-RII expression in Cdx2-transfected IEC-6 cells was associated with increased sensitivity to TGF-ß-induced growth inhibition. Depletion of cellular polyamines further increased TGF-ß receptor expression and additionally enhanced the response to TGF-ß-induced growth inhibition. Increased TGFß-RI and RII in polyamine-deficient cells were also associated with an induction in JunD/AP-1 activity. CONCLUSIONS: These results indicate that the loss of the proliferative potential in differentiated IECs results partially from the increased expression of TGF-ß receptors.

10.
Biochem J ; 437(1): 89-96, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21443519

RESUMO

Overexpression of survivin, a member of the IAP (inhibitor of apoptosis) family, has been correlated with poorer outcomes in multiple malignancies, including oesophageal cancer. The regulatory mechanisms, particularly at the post-transcriptional level, involved in survivin overexpression are not well understood. Previous work from our group has shown that the RNA-binding protein HuR (Hu antigen R), which is also overexpressed in several malignancies, stabilizes the mRNA of XIAP (X-linked IAP), another IAP family member. In the present study, we demonstrate the binding of HuR to a 288 bp fragment in the 3'-UTR (untranslated region) of survivin mRNA in human oesophageal epithelial cells. Unexpectedly, overexpression of HuR led to a decrease in survivin expression. This was associated with decreased survivin mRNA and promoter activity, suggesting a decrease in transcription. Levels of p53, a negative transcriptional regulator of survivin, increased following HuR overexpression, in conjunction with enhanced p53 mRNA stability. Silencing p53 prior to HuR overexpression resulted in increased survivin protein and mRNA stability. These results demonstrate that, in the absence of p53, HuR overexpression results in increased survivin mRNA stability and protein expression. This provides an additional explanation for the increased survivin expression observed in oesophageal cancer cells that have lost p53.


Assuntos
Antígenos de Superfície/metabolismo , Células Epiteliais/metabolismo , Esôfago/metabolismo , Proteínas Inibidoras de Apoptose/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Regiões 3' não Traduzidas , Antígenos de Superfície/genética , Sequência de Bases , Proteínas ELAV , Proteína Semelhante a ELAV 1 , Esôfago/citologia , Genes p53 , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Dados de Sequência Molecular , Estabilidade de RNA , Proteínas de Ligação a RNA/genética , Alinhamento de Sequência , Survivina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...