Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Pharm Res ; 43(7): 714-723, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32666302

RESUMO

Factor VIII (FVIII) is a blood coagulation protein that circulates as a complex with von Willebrand factor (vWF) in the plasma. In the survey of inhibitors in plasma product exposed toddlers (SIPPET) study, plasma-derived FVIII containing vWF was less immunogenic in hemophilia A patients than products with only high-purity FVIII only or recombinant FVIII. The  FVIII purified by the conventional purification process using anion-exchange (AEX) chromatography had a low vWF content. In this study, purified vWF was added to the purified FVIII to increase the vWF content. The purified vWF was recovered from the discarded washing solution of the AEX chromatography using cation-exchange (CEX) chromatography. The vWF/FVIII complex had an abundance of high molecular weight vWF similar to the normal plasma, and a low reactivity of FVIII inhibitors. Furthermore, its efficacy was observed in a mouse model of hemophilia A. Therefore, the vWF/FVIII complex produced by our new purification method could be an effective and less immunogenic therapeutic agent for the hemophilia A and von Willebrand disease.


Assuntos
Fator VIII/isolamento & purificação , Fator de von Willebrand/isolamento & purificação , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Fator VIII/química , Fator VIII/uso terapêutico , Hemofilia A/tratamento farmacológico , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Peso Molecular , Fator de von Willebrand/química , Fator de von Willebrand/uso terapêutico
2.
Genomics Inform ; 10(1): 16-22, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23105924

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is characterized by formation of multiple fluid-filled cysts that expand over time and destroy renal architecture. The proteins encoded by the PKD1 and PKD2 genes, mutations in which account for nearly all cases of ADPKD, may help guard against cystogenesis. Previously developed mouse models of PKD1 and PKD2 demonstrated an embryonic lethal phenotype and massive cyst formation in the kidney, indicating that PKD1 and PKD2 probably play important roles during normal renal tubular development. However, their precise role in development and the cellular mechanisms of cyst formation induced by PKD1 and PKD2 mutations are not fully understood. To address this question, we presently created Pkd2 knockout and PKD2 transgenic mouse embryo fibroblasts. We used a mouse oligonucleotide microarray to identify messenger RNAs whose expression was altered by the overexpression of the PKD2 or knockout of the Pkd2. The majority of identified mutations was involved in critical biological processes, such as metabolism, transcription, cell adhesion, cell cycle, and signal transduction. Herein, we confirmed differential expressions of several genes including aquaporin-1, according to different PKD2 expression levels in ADPKD mouse models, through microarray analysis. These data may be helpful in PKD2-related mechanisms of ADPKD pathogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...