Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 9(11): e113275, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25415200

RESUMO

Parthenogenesis has evolved independently in more than 10 Drosophila species. Most cases are tychoparthenogenesis, which is occasional or accidental parthenogenesis in normally bisexual species with a low hatching rate of eggs produced by virgin females; this form is presumed to be an early stage of parthenogenesis. To address how parthenogenesis and sexual reproduction coexist in Drosophila populations, we investigated several reproductive traits, including the fertility, parthenogenetic capability, diploidization mechanisms, and mating propensity of parthenogenetic D. albomicans. The fertility of mated parthenogenetic females was significantly higher than that of virgin females. The mated females could still produce parthenogenetic offspring but predominantly produced offspring by sexual reproduction. Both mated parthenogenetic females and their parthenogenetic-sexual descendants were capable of parthenogenesis. The alleles responsible for parthenogenesis can be propagated through both parthenogenesis and sexual reproduction. As diploidy is restored predominantly by gamete duplication, heterozygosity would be very low in parthenogenetic individuals. Hence, genetic variation in parthenogenetic genomes would result from sexual reproduction. The mating propensity of females after more than 20 years of isolation from males was decreased. If mutations reducing mating propensities could occur under male-limited conditions in natural populations, decreased mating propensity might accelerate tychoparthenogenesis through a positive feedback mechanism. This process provides an opportunity for the evolution of obligate parthenogenesis. Therefore, the persistence of facultative parthenogenesis may be an adaptive reproductive strategy in Drosophila when a few founders colonize a new niche or when small populations are distributed at the edge of a species' range, consistent with models of geographical parthenogenesis.


Assuntos
Drosophila/genética , Variação Genética , Partenogênese/genética , Comportamento Sexual Animal , Animais , Diploide , Drosophila/fisiologia , Evolução Molecular , Feminino , Fertilidade/genética , Aptidão Genética , Genótipo , Masculino , Fenótipo , Reprodução/genética , Especificidade da Espécie
2.
Evolution ; 43(8): 1610-1624, 1989 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28564329

RESUMO

The nasuta subgroup of Drosophila consists of 12 known species classified within the immigrans group. D. nasuta and D. albomicans are two sibling species widely distributed throughout the Indo-Pacific tropics, which, although morphologically indistinguishable, have different meta-phase-chromosome configurations: chromosomes X and 3 are attached in D. albomicans, so that about 60% of its genes are sex-linked. Our experiments show that, at least in the laboratory, there is no sexual, mechanical, or gametic isolation between the two species. There is, however, hybrid "breakdown" expressed in three ways: 1) reduction in the number of F2 hybrids produced per culture; 2) reduction in the fertility of F2 (males) and F3 (males and females) hybrid progenies; and 3) abnormal sex ratios in the progenies of crosses between strains of certain localities. In experimental populations, the karyotypes of both species are still present in substantial frequencies after 20 generations, although the frequencies of the two karyotypes vary depending on the geographic origin of the strains. Our results support the hypothesis that, in allopatry, the evolution of postzygotic isolation precedes that of prezygotic isolation. The mtDNA is polymorphic in both D. nasuta and D. albomicans and fairly similar between them. Assuming typical rates of mtDNA evolution, the two species would have diverged from each other about 500,000 years ago, whereas the African and Indian populations of D. nasuta (considered to be different subspecies by some authors) might have diverged some 350,000 years ago.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...