Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Nat Methods ; 21(5): 804-808, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38191935

RESUMO

Neuroimaging research requires purpose-built analysis software, which is challenging to install and may produce different results across computing environments. The community-oriented, open-source Neurodesk platform ( https://www.neurodesk.org/ ) harnesses a comprehensive and growing suite of neuroimaging software containers. Neurodesk includes a browser-accessible virtual desktop, command-line interface and computational notebook compatibility, allowing for accessible, flexible, portable and fully reproducible neuroimaging analysis on personal workstations, high-performance computers and the cloud.


Assuntos
Neuroimagem , Software , Neuroimagem/métodos , Humanos , Interface Usuário-Computador , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem
2.
Res Sq ; 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36993557

RESUMO

Neuroimaging data analysis often requires purpose-built software, which can be challenging to install and may produce different results across computing environments. Beyond being a roadblock to neuroscientists, these issues of accessibility and portability can hamper the reproducibility of neuroimaging data analysis pipelines. Here, we introduce the Neurodesk platform, which harnesses software containers to support a comprehensive and growing suite of neuroimaging software (https://www.neurodesk.org/). Neurodesk includes a browser-accessible virtual desktop environment and a command line interface, mediating access to containerized neuroimaging software libraries on various computing platforms, including personal and high-performance computers, cloud computing and Jupyter Notebooks. This community-oriented, open-source platform enables a paradigm shift for neuroimaging data analysis, allowing for accessible, flexible, fully reproducible, and portable data analysis pipelines.

3.
Eur J Neurol ; 30(1): 57-68, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36214080

RESUMO

BACKGROUND AND PURPOSE: Weight loss in patients with amyotrophic lateral sclerosis (ALS) is associated with faster disease progression and shorter survival. Decreased hypothalamic volume is proposed to contribute to weight loss due to loss of appetite and/or hypermetabolism. We aimed to investigate the relationship between hypothalamic volume and body mass index (BMI) in ALS and Alzheimer's disease (AD), and the associations of hypothalamic volume with weight loss, appetite, metabolism and survival in patients with ALS. METHODS: We compared hypothalamic volumes from magnetic resonance imaging scans with BMI for patients with ALS (n = 42), patients with AD (n = 167) and non-neurodegenerative disease controls (n = 527). Hypothalamic volumes from patients with ALS were correlated with measures of appetite and metabolism, and change in anthropomorphic measures and disease outcomes. RESULTS: Lower hypothalamic volume was associated with lower and higher BMI in ALS (quadratic association; probability of direction = 0.96). This was not observed in AD patients or controls. Hypothalamic volume was not associated with loss of appetite (p = 0.58) or hypermetabolism (p = 0.49). Patients with lower BMI and lower hypothalamic volume tended to lose weight (p = 0.08) and fat mass (p = 0.06) over the course of their disease, and presented with an increased risk of earlier death (hazard ratio [HR] 3.16, p = 0.03). Lower hypothalamic volume alone trended for greater risk of earlier death (HR 2.61, p = 0.07). CONCLUSION: These observations suggest that lower hypothalamic volume in ALS contributes to positive and negative energy balance, and  is not universally associated with loss of appetite or hypermetabolism. Critically, lower hypothalamic volume with lower BMI was associated with weight loss and earlier death.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Índice de Massa Corporal , Redução de Peso , Progressão da Doença , Modelos de Riscos Proporcionais
4.
Acta Neuropathol Commun ; 10(1): 61, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468848

RESUMO

A central event in the pathogenesis of motor neuron disease (MND) is the loss of neuromuscular junctions (NMJs), yet the mechanisms that lead to this event in MND remain to be fully elucidated. Maintenance of the NMJ relies upon neural agrin (n-agrin) which, when released from the nerve terminal, activates the postsynaptic Muscle Specific Kinase (MuSK) signaling complex to stabilize clusters of acetylcholine receptors. Here, we report that muscle from MND patients has an increased proportion of slow fibers and muscle fibers with smaller diameter. Muscle cells cultured from MND biopsies failed to form large clusters of acetylcholine receptors in response to either non-MND human motor axons or n-agrin. Furthermore, levels of expression of MuSK, and MuSK-complex components: LRP4, Caveolin-3, and Dok7 differed between muscle cells cultured from MND patients compared to those from non-MND controls. To our knowledge, this is the first time a fault in the n-agrin-LRP4-MuSK signaling pathway has been identified in muscle from MND patients. Our results highlight the n-agrin-LRP4-MuSK signaling pathway as a potential therapeutic target to prolong muscle function in MND.


Assuntos
Agrina , Doença dos Neurônios Motores , Agrina/metabolismo , Humanos , Proteínas Relacionadas a Receptor de LDL/metabolismo , Receptores Colinérgicos/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...