Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
CNS Neurosci Ther ; 30(5): e14748, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38727518

RESUMO

AIMS: To investigate the characteristics of dynamic cerebral autoregulation (dCA) after intravenous thrombolysis (IVT) and assess the relationship between dCA and prognosis. METHODS: Patients with unilateral acute ischemic stroke receiving IVT were prospectively enrolled; those who did not were selected as controls. All patients underwent dCA measurements, by quantifying the phase difference (PD) and gain, at 1-3 and 7-10 days after stroke onset. Simultaneously, two dCA-based nomogram models were established to verify the predictive value of dCA for patients with mild-to-moderate stroke. RESULTS: Finally, 202 patients who received IVT and 238 who did not were included. IVT was positively correlated with higher PD on days 1-3 and 7-10 after stroke onset. PD values in both sides at 1-3 days after stroke onset and in the affected side at 7-10 days after onset were independent predictors of unfavorable outcomes in patients who received IVT. Additionally, in patients with mild-to-moderate stroke who received IVT, the dCA-based nomogram models significantly improved the risk predictive ability for 3-month unfavorable outcomes. CONCLUSION: IVT has a positive effect on dCA in patients with acute stroke; furthermore, dCA may be useful to predict the prognosis of patients with IVT.


Assuntos
Homeostase , AVC Isquêmico , Terapia Trombolítica , Humanos , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Prognóstico , Terapia Trombolítica/métodos , Homeostase/fisiologia , Homeostase/efeitos dos fármacos , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/fisiopatologia , Fibrinolíticos/administração & dosagem , Fibrinolíticos/uso terapêutico , Circulação Cerebrovascular/fisiologia , Circulação Cerebrovascular/efeitos dos fármacos , Estudos Prospectivos , Ativador de Plasminogênio Tecidual/administração & dosagem , Ativador de Plasminogênio Tecidual/uso terapêutico , Administração Intravenosa , Valor Preditivo dos Testes , Idoso de 80 Anos ou mais , Nomogramas , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/fisiopatologia
3.
J Neuroinflammation ; 21(1): 110, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678254

RESUMO

Obesity, a burgeoning global health issue, is increasingly recognized for its detrimental effects on the central nervous system, particularly concerning the integrity of the blood-brain barrier (BBB). This manuscript delves into the intricate relationship between obesity and BBB dysfunction, elucidating the underlying phenotypes and molecular mechanisms. We commence with an overview of the BBB's critical role in maintaining cerebral homeostasis and the pathological alterations induced by obesity. By employing a comprehensive literature review, we examine the structural and functional modifications of the BBB in the context of obesity, including increased permeability, altered transport mechanisms, and inflammatory responses. The manuscript highlights how obesity-induced systemic inflammation and metabolic dysregulation contribute to BBB disruption, thereby predisposing individuals to various neurological disorders. We further explore the potential pathways, such as oxidative stress and endothelial cell dysfunction, that mediate these changes. Our discussion culminates in the summary of current findings and the identification of knowledge gaps, paving the way for future research directions. This review underscores the significance of understanding BBB dysfunction in obesity, not only for its implications in neurodegenerative diseases but also for developing targeted therapeutic strategies to mitigate these effects.


Assuntos
Barreira Hematoencefálica , Obesidade , Fenótipo , Humanos , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/metabolismo , Obesidade/patologia , Obesidade/metabolismo , Obesidade/complicações , Obesidade/fisiopatologia , Animais
4.
Diabetologia ; 67(5): 850-863, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38413438

RESUMO

AIMS/HYPOTHESIS: Type 2 diabetes mellitus is known to contribute to the development of heart failure with preserved ejection fraction (HFpEF). However, identifying HFpEF in individuals with type 2 diabetes early on is often challenging due to a limited array of biomarkers. This study aims to investigate specific biomarkers associated with the progression of HFpEF in individuals with type 2 diabetes, for the purpose of enabling early detection and more effective management strategies. METHODS: Blood samples were collected from individuals with type 2 diabetes, both with and without HFpEF, for proteomic analysis. Plasma integrin α1 (ITGA1) levels were measured and compared between the two groups. Participants were further categorised based on ITGA1 levels and underwent detailed transthoracic echocardiography at baseline and during a median follow-up period of 30 months. Multivariable linear and Cox regression analyses were conducted separately to assess the associations between plasma ITGA1 levels and changes in echocardiography indicators and re-hospitalisation risk. Additionally, proteomic data for the individuals' left ventricles, from ProteomeXchange database, were analysed to uncover mechanisms underlying the change in ITGA1 levels in HFpEF. RESULTS: Individuals with type 2 diabetes and HFpEF showed significantly higher plasma ITGA1 levels than the individuals with type 2 diabetes without HFpEF. These elevated ITGA1 levels were associated with left ventricular remodelling and impaired diastolic function. Furthermore, during a median follow-up of 30 months, multivariable analysis revealed that elevated ITGA1 levels independently correlated with deterioration of both diastolic and systolic cardiac functions. Additionally, higher baseline plasma ITGA1 levels independently predicted re-hospitalisation risk (HR 2.331 [95% CI 1.387, 3.917], p=0.001). Proteomic analysis of left ventricular myocardial tissue provided insights into the impact of increased ITGA1 levels on cardiac fibrosis-related pathways and the contribution made by these changes to the development and progression of HFpEF. CONCLUSIONS/INTERPRETATION: ITGA1 serves as a biomarker for monitoring cardiac structural and functional damage, can be used to accurately diagnose the presence of HFpEF, and can be used to predict potential deterioration in cardiac structure and function as well as re-hospitalisation for individuals with type 2 diabetes. Its measurement holds promise for facilitating risk stratification and early intervention to mitigate the adverse cardiovascular effects associated with diabetes. DATA AVAILABILITY: The proteomic data of left ventricular myocardial tissue from individuals with type 2 diabetes, encompassing both those with and without HFpEF, is available from the ProteomeXchange database at http://proteomecentral.proteomexchange.org .


Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Humanos , Insuficiência Cardíaca/complicações , Função Ventricular Esquerda , Volume Sistólico , Integrina alfa1 , Diabetes Mellitus Tipo 2/complicações , Proteômica , Biomarcadores
5.
J Proteomics ; 297: 105123, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364904

RESUMO

Many studies have shown that fiber in the diet plays an important role in improving the reproductive performance of sows, but there is rarely research on the impact of fiber on early embryo implantation. This study used 4D-Label free technology to identify and analyze the effect of the fiber composition in the diet on the protein in the early pregnancy uterine fluid (UF) of sows. The results indicate that ratio of insoluble fibers to soluble fibers (ISF/SF) 4.89 can increase the concentration of progesterone (PROG) and reduce tumor necrosis factorα (TNF-α) concentration in sow UF. In addition, through 4D-Label free, we identified a total of 4248 proteins, 38 proteins abundance upregulated and 283 proteins abundance downregulated in UF. Through enrichment analysis of these differential abundance proteins (DAPs), it was found that these differential proteins are mainly related to the docking of extracellular vesicles, vesicular transport, inflammatory response, and insulin resistance. Therefore, the results of this study reveal the possible mechanism by which fiber improves the reproductive performance of sows, laying a theoretical foundation for future research on the effects of diet on reproduction. SIGNIFICANCE: This study demonstrates the importance of dietary fiber for early embryo implantation in sows. The effect of dietary ISF/SF on early embryo implantation in sows was elucidated from a proteomic perspective through 4D-Label free technology. This study not only has significant implications for improving sow reproductive efficiency, but also provides important theoretical references for studying early miscarriage and reproductive nutrition in human pregnancy.


Assuntos
Proteômica , Reprodução , Gravidez , Suínos , Animais , Feminino , Humanos , Implantação do Embrião , Dieta/veterinária , Útero , Fibras na Dieta/análise , Fibras na Dieta/farmacologia , Ração Animal/análise , Lactação
6.
Animals (Basel) ; 14(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38200893

RESUMO

The purpose of this study is to investigate the effects of supplementing Yeast-derived postbiotics (Y-dP) to the diet of sows during late pregnancy and lactation on fecal microbiota and short-chain fatty acids (SCFA) in sows and their offspring weaned piglets, as well as the relationship between gut microbiota and SCFA, serum cytokines, and sow reproductive performance. A total of 150 sows were divided into three groups: control diet (CON), CON + Y-dP 1.25 g/kg, and CON + Y-dP 2 g/kg. The results showed that supplementing 0.125% Y-dP to the diet of sows can increase the content of isobutyric acid (IBA) in the feces of pregnant sows and reduce the content of butyric acid (BA) in the feces of weaned piglets (p < 0.05). The fecal microbiota of pregnant sows ß diversity reduced and piglet fecal microbiota ß diversity increased (p < 0.05). Y-dP significantly increased the abundance of Actinobacteria and Limosilactobacilli in the feces of pregnant sows (p < 0.05), as well as the abundance of Verrucomicrobiota, Bacteroidota, and Fusobacteriota in the feces of piglets (p < 0.05). The abundance of Bacteroidota in the feces of pregnant sows is positively correlated with propionic acid (PA) (r > 0.5, p < 0.05). The abundance of Prevotellaceae_NK3B31_group was positively correlated with Acetic acid (AA), PA, Valerate acid (VA), and total volatile fatty acid (TVFA) in the feces of pregnant sows (r > 0.5, p < 0.05), and Bacteroidota and Prevotellaceae_NK3B31_group were negatively correlated with the number of stillbirths (r < -0.5, p < 0.05). The abundance of Lactobacillus and Holdemanella in piglet feces was positively correlated with TVFA in feces and negatively correlated with IgA in serum (r > 0.5, p < 0.05). In conclusion, supplementing Y-dP to the diet of sows from late gestation to lactation can increase the chao1 index and α diversity of fecal microorganisms in sows during lactation, increase the abundance of Actinobacteria and Limosilactobacilli in the feces of sows during pregnancy, and increase the abundance of beneficial bacteria such as Bacteroidetes in piglet feces, thereby improving intestinal health. These findings provide a reference for the application of Y-dP in sow production and a theoretical basis for Y-dP to improve sow production performance.

7.
Br J Pharmacol ; 181(8): 1238-1255, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37949671

RESUMO

BACKGROUND AND PURPOSE: Adipocyte fatty acid-binding protein (A-FABP) exacerbates cerebral ischaemia injury by disrupting the blood-brain barrier (BBB) through inducing expression of MMP-9. Circulating A-FABP levels positively correlate with infarct size in stroke patients. We hypothesized that targeting circulating A-FABP by a neutralizing antibody would alleviate ischaemic stroke outcome. EXPERIMENTAL APPROACH: Monoclonal antibodies (mAbs) against A-FABP were generated using mouse hybridoma techniques. Binding affinities of a generated mAb named 6H2 towards various FABPs were determined using Biacore. Molecular docking studies were performed to characterize the 6H2-A-FABP complex structure and epitope. The therapeutic potential and safety of 6H2 were evaluated in mice with transient middle cerebral artery occlusion (MCAO) and healthy mice, respectively. KEY RESULTS: Replenishment of recombinant A-FABP exaggerated the stroke outcome in A-FABP-deficient mice. 6H2 exhibited nanomolar to picomolar affinities to human and mouse A-FABP, respectively, with minimal cross-reactivities with heart and epidermal FABPs. 6H2 effectively neutralized JNK/c-Jun activation elicited by A-FABP and reduced MMP-9 production in macrophages. Molecular docking suggested that 6H2 interacts with the "lid" of the fatty acid binding pocket of A-FABP, thus likely hindering the binding of its substrates. In mice with transient MCAO, 6H2 significantly attenuated BBB disruption, cerebral oedema, infarction, neurological deficits, and decreased mortality associated with reduced cytokine and MMP-9 production. Chronic 6H2 treatment showed no obvious adverse effects in healthy mice. CONCLUSION AND IMPLICATIONS: These results establish circulating A-FABP as a viable therapeutic target for ischaemic stroke, and provide a highly promising antibody drug candidate with high affinity and specificity.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Camundongos , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Metaloproteinase 9 da Matriz/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Simulação de Acoplamento Molecular , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Fatores Imunológicos , AVC Isquêmico/metabolismo , Adipócitos/metabolismo
8.
CNS Neurosci Ther ; 30(4): e14483, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-37789643

RESUMO

BACKGROUND: Reperfusion therapy after ischemic stroke often causes brain microvascular injury. However, the underlying mechanisms are unclear. METHODS: Transcriptomic and proteomic analyses were performed on human cerebral microvascular endothelial cells following oxygen-glucose deprivation (OGD) or OGD plus recovery (OGD/R) to identify molecules and signaling pathways dysregulated by reperfusion. Major findings were further validated in a mouse model of cerebral ischemia and reperfusion. RESULTS: Transcriptomic analysis identified 390 differentially expressed genes (DEGs) between the OGD/R and OGD group. Pathway analysis indicated that these genes were mostly associated with inflammation, including the TNF signaling pathway, TGF-ß signaling pathway, cytokine-cytokine receptor interaction, NOD-like receptor signaling pathway, and NF-κB signaling pathway. Proteomic analysis identified 201 differentially expressed proteins (DEPs), which were primarily associated with extracellular matrix destruction and remodeling, impairment of endothelial transport function, and inflammatory responses. Six genes (DUSP1, JUNB, NFKBIA, NR4A1, SERPINE1, and THBS1) were upregulated by OGD/R at both the mRNA and protein levels. In mice with cerebral ischemia and reperfusion, brain TNF signaling pathway was activated by reperfusion, and inhibiting TNF-α with adalimumab significantly attenuated reperfusion-induced brain endothelial inflammation. In addition, the protein level of THBS1 was substantially upregulated upon reperfusion in brain endothelial cells and the peri-endothelial area in mice receiving cerebral ischemia. CONCLUSION: Our study reveals the key molecular signatures of brain endothelial reperfusion injury and provides potential therapeutic targets for the treatment of brain microvascular injury after reperfusion therapy in ischemic stroke.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , AVC Isquêmico , Traumatismo por Reperfusão , Camundongos , Humanos , Animais , Células Endoteliais/metabolismo , Proteômica , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Traumatismo por Reperfusão/metabolismo , Oxigênio , Lesões Encefálicas/metabolismo , Inflamação/metabolismo , Reperfusão , Perfilação da Expressão Gênica , AVC Isquêmico/metabolismo , Glucose/metabolismo
9.
Eur J Pharmacol ; 963: 176275, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38113968

RESUMO

Reperfusion therapy is currently the most effective treatment for acute ischemic stroke, but often results in secondary brain injury. Adipocyte fatty acid-binding protein (A-FABP, FABP4, or aP2) was shown to critically mediate cerebral ischemia/reperfusion (I/R) injury by exacerbating blood-brain barrier (BBB) disruption. However, no A-FABP inhibitors have been approved for clinical use due to safety issues. Here, we identified the therapeutic effect of levofloxacin, a widely used antibiotic displaying A-FABP inhibitory activity in vitro, on cerebral I/R injury and determined its target specificity and action mechanism in vivo. Using molecular docking and site-directed mutagenesis, we showed that levofloxacin inhibited A-FABP activity through interacting with the amino acid residue Asp76, Gln95, Arg126 of A-FABP. Accordingly, levofloxacin significantly inhibited A-FABP-induced JNK phosphorylation and expressions of proinflammatory factors and matrix metalloproteinase 9 (MMP-9) in mouse primary macrophages. In wild-type mice with transient middle cerebral artery occlusion, levofloxacin substantially mitigated BBB disruption and neuroinflammation, leading to reduced cerebral infarction, alleviated neurological outcomes, and improved survival. Mechanistically, levofloxacin decreased MMP-9 expression and activity, and thus reduced degradation of extracellular matrix and endothelial tight junction proteins. Importantly, the BBB- and neuro-protective effects of levofloxacin were abolished in A-FABP or MMP-9 knockout mice, suggesting that the therapeutic effects of levofloxacin highly depended on specific targeting of the A-FABP-MMP-9 axis. Overall, our study demonstrates that levofloxacin alleviates A-FABP-induced BBB disruption and neural tissue injury following cerebral I/R, and unveils its therapeutic potential for the treatment of ischemic stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Traumatismo por Reperfusão , Animais , Camundongos , Ratos , Barreira Hematoencefálica/metabolismo , Isquemia Encefálica/complicações , Isquemia Encefálica/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , AVC Isquêmico/tratamento farmacológico , Levofloxacino/farmacologia , Levofloxacino/uso terapêutico , Metaloproteinase 9 da Matriz/metabolismo , Simulação de Acoplamento Molecular , Ratos Sprague-Dawley , Reperfusão , Traumatismo por Reperfusão/metabolismo , Proteínas de Ligação a Ácido Graxo/efeitos dos fármacos , Proteínas de Ligação a Ácido Graxo/metabolismo
10.
Cell Mol Life Sci ; 80(12): 359, 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951845

RESUMO

Pathological cardiac remodeling plays an essential role in the progression of cardiovascular diseases, and numerous microRNAs have been reported to participate in pathological cardiac remodeling. However, the potential role of microRNA-455-5p (miR-455-5p) in this process remains to be elucidated. In the present study, we focused on clarifying the function and searching the direct target of miR-455-5p, as well as exploring its underlying mechanisms in pathological cardiac remodeling. We found that overexpression of miR-455-5p by transfection of miR-455-5p mimic in vitro or tail vain injection of miR-455-5p agomir in vivo provoked cardiac remodeling, whereas genetic knockdown of miR-455-5p attenuated the isoprenaline-induced cardiac remodeling. Besides, miR-455-5p directly targeted to 3'-untranslated region of protein arginine methyltransferase 1 (PRMT1) and subsequently downregulated PRMT1 level. Furthermore, we found that PRMT1 protected against cardiac hypertrophy and fibrosis in vitro. Mechanistically, miR-455-5p induced cardiac remodeling by downregulating PRMT1-induced asymmetric di-methylation on R1748, R1750, R1751 and R1752 of Notch1, resulting in suppression of recruitment of Presenilin, Notch1 cleavage, NICD releasing and Notch signaling pathway. Finally, circulating miR-455-5p was positively correlated with parameters of left ventricular wall thickening. Taken together, miR-455-5p plays a provocative role in cardiac remodeling via inactivation of the PRMT1-mediated Notch signaling pathway, suggesting miR-455-5p/PRMT1/Notch1 signaling axis as potential therapeutic targets for pathological cardiac remodeling.


Assuntos
MicroRNAs , Remodelação Ventricular , Humanos , Remodelação Ventricular/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais/genética , Coração , Cardiomegalia/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
11.
Cell Rep ; 42(11): 113392, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37925638

RESUMO

The blood-brain barrier (BBB) is primarily manifested by a variety of physiological properties of brain endothelial cells (ECs), but the molecular foundation for these properties remains incompletely clear. Here, we generate a comprehensive molecular atlas of adult brain ECs using acutely purified mouse ECs and integrated multi-omics. Using RNA sequencing (RNA-seq) and proteomics, we identify the transcripts and proteins selectively enriched in brain ECs and demonstrate that they are partially correlated. Using single-cell RNA-seq, we dissect the molecular basis of functional heterogeneity of brain ECs. Using integrative epigenomics and transcriptomics, we determine that TCF/LEF, SOX, and ETS families are top-ranked transcription factors regulating the BBB. We then validate the identified brain-EC-enriched proteins and transcription factors in normal mouse and human brain tissue and assess their expression changes in mice with Alzheimer's disease. Overall, we present a valuable resource with broad implications for regulation of the BBB and treatment of neurological disorders.


Assuntos
Doença de Alzheimer , Células Endoteliais , Camundongos , Adulto , Humanos , Animais , Células Endoteliais/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Multiômica , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Fatores de Transcrição/metabolismo
12.
ACS Nano ; 17(20): 19961-19980, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37807265

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the degeneration of dopamine (DA) neurons in the midbrain substantia nigra pars compacta (SNpc). While existing therapeutic strategies can alleviate PD symptoms, they cannot inhibit DA neuron loss. Herein, a tailor-made human serum albumin (HSA)-based selenium nanosystem (HSA/Se nanoparticles, HSA/Se NPs) to treat PD that can overcome the intestinal epithelial barrier (IEB) and blood-brain barrier (BBB) is described. HSA, a transporter for drug delivery, has superior biological characteristics that make it an ideal potential drug delivery substance. Findings reveal that HSA/Se NPs have lower toxicity and higher efficacy than other selenium species and the ability to overcome the IEB and BBB to enrich DA neurons, which then protect MN9D cells from MPP+-induced neurotoxicity and ameliorate both behavioral deficits and DA neuronal death in MPTP-model mice. Thus, a therapeutic drug delivery system composed of orally gavaged HSA/Se NPs for the treatment of PD is described.


Assuntos
Nanopartículas , Doença de Parkinson , Selênio , Humanos , Camundongos , Animais , Doença de Parkinson/tratamento farmacológico , Neurônios Dopaminérgicos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
13.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37394233

RESUMO

The aim of this study was to investigate the effect of dietary supplementation of sows with yeast cultures (XPC) during late gestation and lactation on the immune performance of their weaned offspring under lipopolysaccharide (LPS) stress. A total of 40 Landrace × Yorkshire sows (parity 3 to 7) with similar backfat thickness were selected and randomly divided into two treatment groups: a control group (basal diet) and a yeast culture group (basal diet + 2.0 g/kg XPC). The trial was conducted from day 90 of gestation to day 21 of lactation. At the end of the experiment, 12 piglets with similar weights were selected from each group and slaughtered 4 h after intraperitoneal injection with either saline or LPS. The results showed that the concentrations of interleukin-6 (IL-6) in the thymus and tumor necrosis factor-α in the liver increased significantly (P < 0.05) in weaned piglets after LPS injection. Maternal dietary supplementation with XPC significantly reduced the concentration of inflammatory factors in the plasma and thymus of weaned piglets (P < 0.05). LPS injection significantly upregulated the expression of some tissue inflammation-related genes, significantly downregulated the expression of intestinal tight junction-related genes, and significantly elevated the protein expression of liver phospho-nuclear factor kappa B (p-NF-κB), the phospho-inhibitory subunit of NF-κB (p-IκBα), phospho-c-Jun N-terminal kinase (p-JNK), Nuclear factor kappa-B (NF-κB), and the inhibitory subunit of NF-κB (IκBα) in weaned piglets (P < 0.05). Maternal dietary supplementation with XPC significantly downregulated the gene expression of IL-6 and interleukin-10 (IL-10) in the thymus and decreased the protein expression of c-Jun N-terminal kinase (JNK) in the liver of weaned piglets (P < 0.05). In summary, injection of LPS induced an inflammatory response in weaned piglets and destroyed the intestinal barrier. Maternal dietary supplementation of XPC improved the immune performance of weaned piglets by inhibiting inflammatory responses.


Weaning older, more mature pigs helps prevent many of the adverse gastrointestinal effects associated with weaning stress, and maternal nutritional interventions can influence offspring gut health and growth performance. Therefore, it is important to explore the effects of maternal nutritional interventions on their offspring. Yeast cultures are a class of biological products consisting of metabolites produced during the anaerobic fermentation of yeast and some live yeast cells, and function to maintain the intestinal health of animals and improve production performance. The effect of sow dietary supplementation with yeast cultures on the immune performance of their weaned offspring under lipopolysaccharide stress has not so far been reported. This study provided a basis for understanding the effects of maternal transfer of yeast cultures to their offspring and provided data to support the application of yeast cultures in actual production.


Assuntos
Suplementos Nutricionais , Lipopolissacarídeos , Suínos , Animais , Gravidez , Feminino , Lipopolissacarídeos/farmacologia , Inibidor de NF-kappaB alfa/farmacologia , Saccharomyces cerevisiae , Interleucina-6 , NF-kappa B , Dieta/veterinária , Desmame , Lactação , Ração Animal/análise
14.
Anim Reprod Sci ; 255: 107294, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37421833

RESUMO

The environment encountered by the fetus during its development exerts a profound influence on its physiological function and disease risk in adulthood. Women's intake of high-fat diet during pregnancy and lactation has gradually become an issue of widespread concern. Maternal high-fat diet will not only cause abnormal neurological development and metabolic syndrome symptoms in the offspring, but also affect the fertility of female offspring. Maternal high-fat diet affects the expression of genes related to follicle growth in offspring, such as AAT, AFP and GDF-9, which reduces the number of follicles and impairs follicle development. Additionally, maternal high-fat diet also affects ovarian health by inducing ovarian oxidative stress and cell apoptosis, which collectively can impair the reproductive potential of female offspring. Reproductive potential carries significant importance for both humans and animals. Therefore, this review aims to describe the effect of maternal exposure to high-fat diet on the ovarian development of offspring and to discuss possible mechanisms by which maternal diet affects the growth and metabolism of offspring.


Assuntos
Dieta Hiperlipídica , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Feminino , Animais , Humanos , Dieta Hiperlipídica/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/veterinária , Reprodução , Ovário/metabolismo , Folículo Ovariano , Lactação/fisiologia , Fenômenos Fisiológicos da Nutrição Materna/fisiologia
15.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37330668

RESUMO

This experiment was conducted to determine the effects of yeast-derived postbiotic (YDP) supplementation in sow diets during late gestation and lactation on the performance of sows and their offspring. At 90-d gestation, 150 sows (Landrace × Large White, parity: 3.93 ±â€…0.11) were allocated to three dietary treatments (n = 50 per treatment): 1) basal diet (control [CON]), 2) basal diet with 1.25 g/kg YDP (0.125 group), and 3) basal diet with 2.00 g/kg YDP (0.200 group). The experiment continued until the end of weaning (day 21 of lactation). Supplementation with YDP resulted in greater deposition of backfat in sows during late gestation and an increasing trend in average weaning weight of piglets than observed in the CON group (P < 0.01, P = 0.05). Supplementation with YDP decreased piglet mortality and diarrhea index in piglets (P < 0.05). In farrowing sows' serum, the glutathione peroxide content in the YDP group was lower than that in the CON group (P < 0.05); the content of immunoglobulin A (IgA) in the 0.200 group or YDP group was higher than that in the CON group (P < 0.05). In lactating sows' serum, malondialdehyde content was higher in the YDP group (P < 0.05). In day 3 milk of sows, the 0.200 group tended to increase the lactose content (P = 0.07), and tended to decrease the secretory immunoglobulin A (sIgA) content (P = 0.06) with respect to that in the CON group. The sIgA content in the YDP group was lower than that in the CON group (P < 0.05). In the milk of sows, the 0.200 group tended to increase the lactose content with respect to that in the CON group (P = 0.08); the immunoglobulin G (IgG) content in the 0.125 group or YDP group was higher than that in the CON group (P < 0.05). YDP supplementation increased the IgA content in the milk (P < 0.01). In sow placenta, the content of total anti-oxidant capacity in the YDP group was higher than that in the CON group (P = 0.05); and the content of transforming growth factor-ß in the YDP group was higher than that in the CON group (P < 0.05). In piglet serum, the content of IgG and immunoglobulin M in the 0.125 group was higher than that in the CON and 0.200 groups (P < 0.05). In summary, this study indicated that feeding sows diets supplemented with YDP from late gestation through lactation increased sows' backfat deposition in late gestation and piglets' weaning weight; decreased piglet mortality and diarrhea index in piglets; and improved maternal and offspring immunity.


Rapid fetal and reproductive tissue development in late gestation poses a challenge to sow health. Nutritional interventions have been shown to effectively improve animal performance. The present study investigated whether dietary supplementation with a yeast-derived postbiotic (YDP) during late gestation and lactation might improve the health and production performance of sows and piglets. At two tested dose levels (1.25 and 2.00 g/kg in the diet), dietary YDP supplementation increased backfat deposition in sows during late gestation and weaning weight in piglets, and decreased the diarrhea index in piglets. YDP supplementation tended to increase lactose content in sow milk. Dietary YDP supplementation improved immunity in sows at farrowing and piglets at weaning. These findings indicated that YDP use improves sows' production performance and may serve as an important approach to optimizing nutrient programs in sow production.


Assuntos
Lactação , Leite , Animais , Gravidez , Suínos , Feminino , Saccharomyces cerevisiae , Colostro , Lactose , Dieta/veterinária , Suplementos Nutricionais , Paridade , Imunoglobulina A , Imunoglobulina G , Imunoglobulina A Secretora/farmacologia , Diarreia/veterinária , Imunidade , Ração Animal/análise
16.
Photoacoustics ; 31: 100494, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37131996

RESUMO

Membrane viscosity is an important property of cell biology, which determines cellular function, development and disease progression. Various experimental and computational methods have been developed to investigate the mechanics of cells. However, there have been no experimental measurements of the membrane viscosity at high-frequencies in live cells. High frequency measurements are important because they can probe viscoelastic effects. Here, we investigate the membrane viscosity at gigahertz-frequencies through the damping of the acoustic vibrations of gold nanoplates. The experiments are modeled using a continuum mechanics theory which reveals that the membranes display viscoelasticity, with an estimated relaxation time of ca. 5.7 + 2.4 / - 2.7 ps. We further demonstrate that membrane viscoelasticity can be used to differentiate a cancerous cell line (the human glioblastoma cells LN-18) from a normal cell line (the mouse brain microvascular endothelial cells bEnd.3). The viscosity of cancerous cells LN-18 is lower than that of healthy cells bEnd.3 by a factor of three. The results indicate promising applications of characterizing membrane viscoelasticity at gigahertz-frequency in cell diagnosis.

17.
CNS Neurosci Ther ; 29(10): 3031-3042, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37157233

RESUMO

AIMS: This study aimed to investigate changes in dynamic cerebral autoregulation (dCA), 20 stroke-related blood biomarkers, and autonomic regulation after patent foramen ovale (PFO) closure in severe migraine patients. METHODS: Patent foramen ovale severe migraine patients, matched non-PFO severe migraine patients, and healthy controls were included. dCA and autonomic regulation were evaluated in each participant at baseline, and within 48-h and 30 days after closure in PFO migraineurs. A panel of stroke-related blood biomarkers was detected pre-surgically in arterial-and venous blood, and post-surgically in the arterial blood in PFO migraineurs. RESULTS: Forty-five PFO severe migraine patients, 50 non-PFO severe migraine patients, and 50 controls were enrolled. The baseline dCA function of PFO migraineurs was significantly lower than that of non-PFO migraineurs and controls but was rapidly improved with PFO closure, remaining stable at 1-month follow-up. Arterial blood platelet-derived growth factor-BB (PDGF-BB) levels were higher in PFO migraineurs than in controls, which was immediately and significantly reduced after closure. No differences in autonomic regulation were observed among the three groups. CONCLUSION: Patent foramen ovale closure can improve dCA and alter elevated arterial PDGF-BB levels in migraine patients with PFO, both of which may be related to the preventive effect of PFO closure on stroke occurrence/recurrence.


Assuntos
Forame Oval Patente , Transtornos de Enxaqueca , Acidente Vascular Cerebral , Humanos , Forame Oval Patente/cirurgia , Becaplermina , Resultado do Tratamento , Cateterismo Cardíaco/efeitos adversos , Acidente Vascular Cerebral/etiologia , Biomarcadores
18.
J Cereb Blood Flow Metab ; 43(10): 1702-1712, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37021629

RESUMO

Finding appropriate drugs to improve cerebral autoregulation (CA) in patients with acute ischemic stroke (AIS) is necessary to improve prognosis. We aimed to investigate the effect of butylphthalide on CA in patients with AIS. In this randomized controlled trial, 99 patients were 2:1 randomized to butylphthalide or placebo group. The butylphthalide group received intravenous infusion with a preconfigured butylphthalide-sodium chloride solution for 14 days and an oral butylphthalide capsule for additional 76 days. The placebo group synchronously received an intravenous infusion of 100 mL 0.9% saline and an oral butylphthalide simulation capsule. The transfer function parameter, phase difference (PD), and gain were used to quantify CA. The primary outcomes were CA levels on the affected side on day 14 and day 90. Eighty patients completed the follow-up (52 in the butylphthalide group and 28 in the placebo group). The PD of the affected side on 14 days or discharge and on 90 days was higher in the butylphthalide group than in the placebo group. The differences in safety outcomes were not significant. Therefore, butylphthalide treatment for 90 days can significantly improve CA in patients with AIS.Trial registration: ClinicalTrial.gov: NCT03413202.


Assuntos
Aterosclerose , Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Artérias , Homeostase , Acidente Vascular Cerebral/tratamento farmacológico , Resultado do Tratamento , Isquemia Encefálica/tratamento farmacológico
19.
Pharmacol Res ; 190: 106720, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36893823

RESUMO

Rapid upregulation of matrix metalloproteinase 9 (MMP-9) leads to blood-brain barrier (BBB) breakdown following stroke, but no MMP-9 inhibitors have been approved in clinic largely due to their low specificities and side effects. Here, we explored the therapeutic potential of a human IgG monoclonal antibody (mAb), L13, which was recently developed with exclusive neutralizing specificity to MMP-9, nanomolar potency, and biological function, using mouse stroke models and stroke patient samples. We found that L13 treatment at the onset of reperfusion following cerebral ischemia or after intracranial hemorrhage (ICH) significantly reduced brain tissue injury and improved the neurological outcomes of mice. Compared to control IgG, L13 substantially attenuated BBB breakdown in both types of stroke model by inhibiting MMP-9 activity-mediated degradations of basement membrane and endothelial tight junction proteins. Importantly, these BBB-protective and neuroprotective effects of L13 in wild-type mice were comparable to Mmp9 genetic deletion and fully abolished in Mmp9 knockout mice, highlighting the in vivo target specificity of L13. Meanwhile, ex vivo co-incubation with L13 significantly neutralized the enzymatic activities of human MMP-9 in the sera of ischemic and hemorrhagic stroke patients, or in the peri-hematoma brain tissues from hemorrhagic stroke patients. Overall, we demonstrated that MMP-9 exclusive neutralizing mAbs constitute a potential feasible therapeutic approach for both ischemic and hemorrhagic stroke.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral Hemorrágico , Acidente Vascular Cerebral , Camundongos , Humanos , Animais , Metaloproteinase 9 da Matriz/metabolismo , Barreira Hematoencefálica/metabolismo , Acidente Vascular Cerebral Hemorrágico/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Isquemia Encefálica/metabolismo , Camundongos Knockout
20.
Neurobiol Dis ; 179: 106044, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36804285

RESUMO

Stroke is the second leading cause of death worldwide; however, the treatment choices available to neurologists are limited in clinical practice. Lipocalin 2 (LCN2) is a secreted protein, belonging to the lipocalin superfamily, with multiple biological functions in mediating innate immune response, inflammatory response, iron-homeostasis, cell migration and differentiation, energy metabolism, and other processes in the body. LCN2 is expressed at low levels in the brain under normal physiological conditions, but its expression is significantly up-regulated in multiple acute stimulations and chronic pathologies. An up-regulation of LCN2 has been found in the blood/cerebrospinal fluid of patients with ischemic/hemorrhagic stroke, and could serve as a potential biomarker for the prediction of the severity of acute stroke. LCN2 activates reactive astrocytes and microglia, promotes neutrophil infiltration, amplifies post-stroke inflammation, promotes blood-brain barrier disruption, white matter injury, and neuronal death. Moreover, LCN2 is involved in brain injury induced by thrombin and erythrocyte lysates, as well as microvascular thrombosis after hemorrhage. In this paper, we review the role of LCN2 in the pathological processes of ischemic stroke; intracerebral hemorrhage; subarachnoid hemorrhage; and stroke-related brain diseases, such as vascular dementia and post-stroke depression, and their underlying mechanisms. We hope that this review will help elucidate the value of LCN2 as a therapeutic target in stroke.


Assuntos
Lesões Encefálicas , Acidente Vascular Cerebral , Humanos , Astrócitos/metabolismo , Encéfalo/metabolismo , Lesões Encefálicas/metabolismo , Lipocalina-2/metabolismo , Lipocalinas/metabolismo , Acidente Vascular Cerebral/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...