Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(17): 11474-11486, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38632861

RESUMO

Cobalt-nitrogen-carbon (Co-N-C) catalysts with a CoN4 structure exhibit great potential for oxygen reduction reaction (ORR), but the imperfect adsorption energy toward oxygen species greatly limits their reduction efficiency and practical application potential. Here, F-coordinated Co-N-C catalysts with square-pyramidal CoN4-F1 configuration are successfully synthesized using F atoms to regulate the axial coordination of Co centers via hydrothermal and chemical vapor deposition methods. During the synthesis process, the geometry structure of the Co atom converts from six-coordinated Co-F6 to square-pyramidal CoN4-F1 in the coordinatively unsaturated state, which provides an open binding site for the O2. The introduction of axial F atoms into the CoN4 plane alters the local atomic environment around Co, significantly improving the ORR activity and Zn-air batteries performance. In situ spectroscopy proves that CoN4-F1 sites strongly combine with the OOH* intermediate and facilitate the splitting of O-O bond, making OOH* readily decompose into O* and OH* via a dissociative pathway. Theoretical calculations confirm that the axial F atom effectively reduces the electronic density of the Co centers and facilitates the desorption of the OH* intermediate, efficiently accelerating the overall ORR kinetics. This work advances a feasible synthesis mechanism of axial ligands and provides a route to construct efficient high-coordination catalysts.

2.
Nat Commun ; 15(1): 1719, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409205

RESUMO

Tuning interfacial electric fields provides a powerful means to control electrocatalyst activity. Importantly, electric fields can modify adsorbate binding energies based on their polarizability and dipole moment, and hence operate independently of scaling relations that fundamentally limit performance. However, implementation of such a strategy remains challenging because typical methods modify the electric field non-uniformly and affects only a minority of active sites. Here we discover that uniformly tunable electric field modulation can be achieved using a model system of single-atom catalysts (SACs). These consist of M-N4 active sites hosted on a series of spherical carbon supports with varying degrees of nanocurvature. Using in-situ Raman spectroscopy with a Stark shift reporter, we demonstrate that a larger nanocurvature induces a stronger electric field. We show that this strategy is effective over a broad range of SAC systems and electrocatalytic reactions. For instance, Ni SACs with optimized nanocurvature achieved a high CO partial current density of ~400 mA cm-2 at >99% Faradaic efficiency for CO2 reduction in acidic media.

3.
Small ; : e2400564, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368264

RESUMO

Developing efficient metal-free catalysts to directly synthesize hydrogen peroxide (H2 O2 ) through a 2-electron (2e) oxygen reduction reaction (ORR) is crucial for substituting the traditional energy-intensive anthraquinone process. Here, in-plane topological defects enriched graphene with pentagon-S and pyrrolic-N coordination (SNC) is synthesized via the process of hydrothermal and nitridation. In SNC, pentagon-S and pyrrolic-N originating from thiourea precursor are covalently grafted onto the basal plane of the graphene framework, building unsymmetrical dumbbell-like S─C─N motifs, which effectively modulates atomic and electronic structures of graphene. The SNC catalyst delivers ultrahigh H2 O2 productivity of 8.1, 7.3, and 3.9 mol gcatalyst -1  h-1 in alkaline, neutral, and acidic electrolytes, respectively, together with long-term operational stability in pH-universal electrolytes, outperforming most reported carbon catalysts. Theoretical calculations further unveil that defective S─C─N motifs efficiently optimize the binding strength to OOH* intermediate and substantially diminish the kinetic barrier for reducing O2 to H2 O2 , thereby promoting the intrinsic activity of 2e-ORR.

4.
Angew Chem Int Ed Engl ; 63(12): e202316360, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38243690

RESUMO

Halide solid electrolytes (SEs) have attracted significant attention due to their competitive ionic conductivity and good electrochemical stability. Among typical halide SEs (chlorides, bromides, and iodides), substantial efforts have been dedicated to chlorides or bromides, with iodide SEs receiving less attention. Nevertheless, compared with chlorides or bromides, iodides have both a softer Li sublattice and lower reduction limit, which enable iodides to possess potentially high ionic conductivity and intrinsic anti-reduction stability, respectively. Herein, we report a new series of iodide SEs: Lix YI3+x (x=2, 3, 4, or 9). Through synchrotron X-ray/neutron diffraction characterizations and theoretical calculations, we revealed that the Lix YI3+x SEs belong to the high-symmetry cubic structure, and can accommodate abundant vacancies. By manipulating the defects in the iodide structure, balanced Li-ion concentration and generated vacancies enables an optimized ionic conductivity of 1.04 × 10-3  S cm-1 at 25 °C for Li4 YI7 . Additionally, the promising Li-metal compatibility of Li4 YI7 is demonstrated via electrochemical characterizations (particularly all-solid-state Li-S batteries) combined with interface molecular dynamics simulations. Our study on iodide SEs provides deep insights into the relation between high-symmetry halide structures and ionic conduction, which can inspire future efforts to revitalize halide SEs.

5.
J Am Chem Soc ; 146(5): 2977-2985, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38284994

RESUMO

The recently surged halide-based solid electrolytes (SEs) are great candidates for high-performance all-solid-state batteries (ASSBs), due to their decent ionic conductivity, wide electrochemical stability window, and good compatibility with high-voltage oxide cathodes. In contrast to the crystalline phases in halide SEs, amorphous components are rarely understood but play an important role in Li-ion conduction. Here, we reveal that the presence of amorphous component is common in halide-based SEs that are prepared via mechanochemical method. The fast Li-ion migration is found to be associated with the local chemistry of the amorphous proportion. Taking Zr-based halide SEs as an example, the amorphization process can be regulated by incorporating O, resulting in the formation of corner-sharing Zr-O/Cl polyhedrons. This structural configuration has been confirmed through X-ray absorption spectroscopy, pair distribution function analyses, and Reverse Monte Carlo modeling. The unique structure significantly reduces the energy barriers for Li-ion transport. As a result, an enhanced ionic conductivity of (1.35 ± 0.07) × 10-3 S cm-1 at 25 °C can be achieved for amorphous Li3ZrCl4O1.5. In addition to the improved ionic conductivity, amorphization of Zr-based halide SEs via incorporation of O leads to good mechanical deformability and promising electrochemical performance. These findings provide deep insights into the rational design of desirable halide SEs for high-performance ASSBs.

6.
Inorg Chem ; 62(32): 13011-13020, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37535952

RESUMO

The field of designing artificial metalloproteins has yet to effectively tackle the incorporation of multimetal clusters, which is a key component of natural metalloproteins, such as metallothioneins (MTs) and calmodulin. MT is a physiological, essential, cysteine-rich metalloprotein that binds to a variety of metals but is only known to form metal-thiolate clusters with Cd2+, Zn2+, and Cu+. Bismuth is a xenobiotic metal and a component of metallodrugs used to treat gastric ulcers and cancer, as well as an emerging metal used in industrial practices. Electrospray ionization mass spectrometry, UV-visible spectroscopy, and extended X-ray absorption fine structure spectroscopy were used to probe the Bi3+ binding site structures in apo-MT3 (brain-located MT) at pH 7.4 and 2 and provide the complete set of binding affinities. We discovered the highly cooperative formation of a novel Bi3+ species, Bi2MT3, under physiological conditions, where each Bi3+ ion is coordinated by three cysteinyl thiolates, with one of the thiolates bridging between the two Bi3+ ions. This cluster structure was associated with a strong visible region absorption band, which was disrupted by the addition of Zn2+ and reversibly disrupted by acidification and increased temperature. This is the first reported presence of bridging cysteines for a xenobiotic metal in MT3 and the Bi2MT structure is the first Bi cluster found in a metalloprotein.

7.
Nat Commun ; 14(1): 3780, 2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37355635

RESUMO

Solid electrolyte is vital to ensure all-solid-state batteries with improved safety, long cyclability, and feasibility at different temperatures. Herein, we report a new family of amorphous solid electrolytes, xLi2O-MCly (M = Ta or Hf, 0.8 ≤ x ≤ 2, y = 5 or 4). xLi2O-MCly amorphous solid electrolytes can achieve desirable ionic conductivities up to 6.6 × 10-3 S cm-1 at 25 °C, which is one of the highest values among all the reported amorphous solid electrolytes and comparable to those of the popular crystalline ones. The mixed-anion structural models of xLi2O-MCly amorphous SEs are well established and correlated to the ionic conductivities. It is found that the oxygen-jointed anion networks with abundant terminal chlorines in xLi2O-MCly amorphous solid electrolytes play an important role for the fast Li-ion conduction. More importantly, all-solid-state batteries using the amorphous solid electrolytes show excellent electrochemical performance at both 25 °C and -10 °C. Long cycle life (more than 2400 times of charging and discharging) can be achieved for all-solid-state batteries using the xLi2O-TaCl5 amorphous solid electrolyte at 400 mA g-1, demonstrating vast application prospects of the oxychloride amorphous solid electrolytes.


Assuntos
Líquidos Corporais , Lítio , Eletrólitos , Cloretos , Cloro
8.
Phys Chem Chem Phys ; 25(30): 20308-20319, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37099205

RESUMO

In this work, we studied the optical properties of Dy-doped Gd2O3 nanoparticles (NPs) before and after their APTES functionalisation. We obtained luminescent Dy@Gd2O3 NPs (0.5, 1, and 5% mol) using a modified polyol method. Our work describes their detailed structural analysis using FT-IR, XRD, HRTEM, TGA and XAS techniques. The results show that these systems present a crystalline structure with a body-centred cubic cell and particle sizes of 10 nm. The dopant position was inferred as substitutional, through XAS analysis at the M4,5-edges of Gd and Dy and K-edge of O, and in C2 sites, based on photoluminescence studies. There was sensitization of the luminescence by the matrix as shown by the emission increase of the hypersensitive transition (6F9/2 → 6H13/2, 572 nm) and also a broadband appears around 510 nm attributed to defects in Gd2O3. An enhanced emissive lifetime of 398 µs was found for the sample doped at 1%. We functionalised the Dy@Gd2O3 (at 1%) NPs with 3-aminopropiltrietoxisilane (APTES) for further application as a biomarker sensor. We found that these NPs conserved their luminescence after adding the surface agent (avoiding quenching effects) making them potential materials for biosensing.

9.
Nano Lett ; 23(2): 685-693, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36594847

RESUMO

While tuning the electronic structure of Pt can thermodynamically alleviate CO poisoning in direct methanol fuel cells, the impact of interactions between intermediates on the reaction pathway is seldom studied. Herein, we contrive a PtBi model catalyst and realize a complete inhibition of the CO pathway and concurrent enhancement of the formate pathway in the alkaline methanol electrooxidation. The key role of Bi is enriching OH adsorbates (OHad) on the catalyst surface. The competitive adsorption of CO adsorbates (COad) and OHad at Pt sites, complementing the thermodynamic contribution from alloying Bi with Pt, switches the intermediate from COad to formate that circumvents CO poisoning. Hence, 8% Bi brings an approximately 6-fold increase in activity compared to pure Pt nanoparticles. This notion can be generalized to modify commercially available Pt/C catalysts by a microwave-assisted method, offering opportunities for the design and practical production of CO-tolerance electrocatalysts in an industrial setting.

10.
J Am Chem Soc ; 145(4): 2183-2194, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36583711

RESUMO

The revival of ternary halides Li-M-X (M = Y, In, Zr, etc.; X = F, Cl, Br) as solid-state electrolytes (SSEs) shows promise in realizing practical solid-state batteries due to their direct compatibility toward high-voltage cathodes and favorable room-temperature ionic conductivities. Most of the reported superionic halide SSEs have a structural pattern of [MCl6]x- octahedra and generate a tetrahedron-assisted Li+ ion diffusion pathway. Here, we report a new class of zeolite-like halide frameworks, SmCl3, for example, in which 1-dimensional channels are enclosed by [SmCl9]6- tricapped trigonal prisms to provide a short jumping distance of 2.08 Å between two octahedra for Li+ ion hopping. The fast Li+ diffusion along the channels is verified through ab initio molecular dynamics simulations. Similar to zeolites, the SmCl3 framework can be grafted with halide species to obtain mobile ions without altering the base structure, achieving an ionic conductivity over 10-4 S cm-1 at 30 °C with LiCl as the adsorbent. Moreover, the universality of the interface-bonding behavior and ionic diffusion in a class of framework materials is demonstrated. It is suggested that the ionic conductivity of the MCl3/halide composite (M = La-Gd) is likely in correlation with the ionic conductivity of the grafted halide species, interfacial bonding, and framework composition/dimensions. This work reveals a potential class of halide structures for superionic conductors and opens up a new frontier for constructing zeolite-like frameworks in halide-based materials, which will promote the innovation of superionic conductor design and contribute to a broader selection of halide SSEs.

11.
Phys Chem Chem Phys ; 24(47): 29034-29042, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36427044

RESUMO

Gold nanoclusters (AuNCs) are a unique class of materials that exhibit visible luminescence. Amorphous calcium phosphate (ACP) is a widely used biomaterial for a variety of purposes, such as drug delivery, bone cementing, and implant coatings. In this study, a nanocomposite of AuNCs and ACP is prepared by biomimetic mineralization in a Dulbecco's modified Eagle's medium (DMEM). The strong interaction between AuNCs and Ca2+ ions effectively induces aggregation of AuNCs. The as-formed nanocomposite, AuNCs@ACP, emits significantly enhanced luminescence compared to AuNCs alone. The luminescence enhancement mechanism is investigated using synchrotron X-ray absorption fine structure spectroscopy. In addition, the presence of AuNCs stabilizes ACP and also enhances the biocompatibility of ACP in promoting cell proliferation, and the nanocomposites are promising as nanoprobes for cancer therapy and/or bone tissue engineering.


Assuntos
Biomimética , Ouro , Fosfatos de Cálcio
12.
Artigo em Inglês | MEDLINE | ID: mdl-36315848

RESUMO

Developing efficient electrocatalysts to accelerate the sluggish conversion of lithium polysulfides (LiPSs) is of paramount importance for improving the performances of lithium-sulfur (Li-S) batteries. However, a consensus has not yet been reached on the in situ evolution of the electrocatalysts as well as the real catalytic active sites. Herein, defective MnV2O6 (D-MVO) is designed as a precatalyst toward LiPSs' adsorption and conversion. We reveal that the introduction of surface V defects can effectively accelerate the in situ sulfurization of D-MVO during the electrochemical cycling process, which acts as the real electrocatalyst for LiPSs' retention and catalysis. The in situ-sulfurized D-MVO demonstrates much higher electrocatalytic activity than the defect-free MVO toward LiPSs' redox conversion. With these merits, the Li-S batteries with D-MVO separators achieve superior long-term cycling performance with a low decay rate of 0.056% per cycle after 1000 cycles at 1C. Even under an elevated sulfur loading of 5.5 mg cm-2, a high areal capacity of 4.21 mAh cm-2 is still retained after 50 cycles at 0.1C. This work deepens the cognition of the dynamic evolution of the electrocatalysts and provides a favorable strategy for designing efficient precatalysts for advanced Li-S batteries using defect engineering.

13.
Phys Chem Chem Phys ; 24(35): 21131-21140, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36039710

RESUMO

Near-infrared (NIR)-emitting persistent luminescence (PersL) nanoparticles have attracted great attention as a novel optical probe for bioimaging and biosensing applications. These nanoparticles emit long-lasting luminescence after the removal of the excitation source, which effectively eliminates the interference from tissue autofluorescence. Cr-doped zinc gallate (ZnGa2O4:Cr3+, CZGO) is a representative NIR-emitting PersL material. On the other hand, amorphous calcium phosphate (ACP) is a widely used drug carrier due to its high biocompatibility. In this work, we present a design of an ACP-based drug carrier with PersL properties, by forming a CZGO-ACP composite. The PersL properties of CZGO were preserved by composite formation, while it is found that the Zn2+ could migrate from CZGO to ACP during composite formation, leading to different luminescence mechanisms between pure CZGO and the CZGO-ACP composite. The electronic structure of the composite was analyzed by synchrotron X-ray absorption spectroscopy, and a structure-luminescence correlation was proposed.


Assuntos
Luminescência , Nanopartículas , Cálcio , Portadores de Fármacos , Nanopartículas/química , Fosfatos , Zinco , Compostos de Zinco
14.
ACS Appl Mater Interfaces ; 14(15): 17570-17577, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35390250

RESUMO

Rechargeable aqueous zinc-ion batteries (AZIBs) are close complements to lithium-ion batteries for next-generation grid-scale applications owing to their high specific capacity, low cost, and intrinsic safety. Nevertheless, the viable cathode materials (especially manganese oxides) of AZIBs suffer from poor conductivity and inferior structural stability upon cycling, thereby impeding their practical applications. Herein, a facile synthetic strategy of bead-like manganese oxide coated with carbon nanofibers (MnOx-CNFs) based on electrospinning is reported, which can effectively improve the electron/ion diffusion kinetics and provide robust structural stability. These benefits of MnOx-CNFs are evident in the electrochemical performance metrics, with a long cycling durability (i.e., a capacity retention of 90.6% after 2000 cycles and 71% after 5000 cycles) and an excellent rate capability. Furthermore, the simultaneous insertion of H+/Zn2+ and the Mn redox process at the surface and in the bulk of MnOx-CNFs are clarified in detail. Our present study not only provides a simple avenue for synthesizing high-performance Mn-based cathode materials but also offers unique knowledge on understanding the corresponding electrochemical reaction mechanism for AZIBs.

15.
Small ; 18(8): e2106433, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34898005

RESUMO

Electrochemical CO2 reduction to valuable multi-carbon (C2+ ) products is attractive but with poor selectivity and activity due to the low-efficient CC coupling. Herein, a lithium vacancy-tuned Li2 CuO2 with square-planar [CuO4 ] layers is developed via an electrochemical delithiation strategy. Density functional theory calculations reveal that the lithium vacancies (VLi ) lead to a shorter distance between adjacent [CuO4 ] layers and reduce the coordination number of Li+ around each Cu, featuring with a lower energy barrier for COCO coupling than pristine Li2 CuO2 without VLi . With the VLi percentage of ≈1.6%, the Li2- x CuO2 catalyst exhibits a high Faradaic efficiency of 90.6 ± 7.6% for C2+ at -0.85 V versus reversible hydrogen electrode without iR correction, and an outstanding partial current density of -706 ± 32 mA cm-2 . This work suggests an attractive approach to create controllable alkali metal vacancy-tuned Cu catalytic sites toward C2+ products in electrochemical CO2 reduction.

16.
Nano Lett ; 20(10): 7751-7759, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32959660

RESUMO

Developing efficient Pt-based electrocatalysts for the methanol oxidation reaction (MOR) is of pivotal importance for large-scale application of direct methanol fuel cells (DMFCs), but Pt suffers from severe deactivation brought by the carbonaceous intermediates such as CO. Here, we demonstrate the formation of a bismuth oxyhydroxide (BiOx(OH)y)-Pt inverse interface via electrochemical reconstruction for enhanced methanol oxidation. By combining density functional theory calculations, X-ray absorption spectroscopy, ambient pressure X-ray photoelectron spectroscopy, and electrochemical characterizations, we reveal that the BiOx(OH)y-Pt inverse interface can induce the electron deficiency of neighboring Pt; this would result in weakened CO adsorption and strengthened OH adsorption, thereby facilitating the removal of the poisonous intermediates and ensuring the high activity and good stability of Pt2Bi sample. This work provides a comprehensive understanding of the inverse interface structure and deep insight into the active sites for MOR, offering great opportunities for rational fabrication of efficient electrocatalysts for DMFCs.

17.
ACS Appl Mater Interfaces ; 12(39): 43665-43673, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32876426

RESUMO

Sodium layered transition-metal oxides have attracted great attention for advanced Na-ion batteries (NIBs) because of their rich structural diversity and superior specific capacity provided by not only cation redox reactions but also possible oxygen-related anionic redox reactions. However, they usually undergo severe electrochemical performance fading, especially the voltage retention during the cationic and anionic redox processes. Herein, we design and synthesize a couple of novel sodium lithium magnesium aluminum manganese oxides (Na0.75Li0.2Mg0.05Al0.05Mn0.7O2) with the same Na+ coordination environment but different oxide layer stacking sequences, namely, P2-NLMAMO and P3-NLMAMO. We systematically investigate and compare the voltage decay phenomenon and the cationic/anionic redox processes under different electrochemical cycling windows combined with ex situ hard and soft X-ray absorption spectroscopy techniques. The results clearly indicate that the P2-NLMAMO electrode with a lower extent of Mn redox is prone to deliver a superior capacity retention and rate performance, more importantly, a higher average voltage in contrast to the P3-type counterpart. In addition, negligible change is detected for the average discharge voltage upon extended cycling when increasing the discharge cutoff voltage to 2.5 V for both P2-NLMAMO and P3-NLMAMO. This unique feature work provides an effective strategy for developing high-capacity P-type layered cathodes based on both cationic and anionic redox chemistry under controlled crystal structure arrangement, which could lead to a deeper understanding of the correlation between crystal structure and electrochemical performance for NIBs.

18.
ChemSusChem ; 13(10): 2739-2744, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32187860

RESUMO

Electrocatalytic water splitting, as one of the most promising methods to store renewable energy generated by intermittent sources, such as solar and wind energy, has attracted tremendous attention in recent years. Developing efficient, robust, and green catalysts for the hydrogen and oxygen evolution reactions (HER and OER) is of great interest. This study concerns a facile and green approach for producing RuNi/RuNi oxide nanoheterostructures by controllable partial oxidation of RuNi nanoalloy, which is characterized and confirmed by various techniques, including high-resolution transmission electron microscopy and synchrotron-based X-ray absorption spectroscopy. This nanoheterostructure demonstrates outstanding bifunctional activities for catalyzing the HER and OER with overpotentials that are both among the lowest reported values. In a practical alkali-water-splitting electrolyzer, it also achieves a record-low cell voltage of 1.42 V at 10 mA cm-2 , which is significantly superior to the commercial RuO2 //Pt/C couple and other reported bifunctional water-splitting electrocatalysts. Density functional theory calculations are employed to elaborate the effect of Ni incorporation. This simple catalyst preparation approach is expected to be transferrable to other electrocatalytic reactions.

19.
ACS Appl Mater Interfaces ; 11(44): 41304-41312, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31603303

RESUMO

The ever-increasing demand for large-scale energy storage has driven the prosperous investigation of sodium-ion batteries (NIBs). As a promising cathode candidate for NIBs, P2-type Na2/3Ni1/3Mn2/3O2 (NaNMO), a prototype sodium-layered oxide, has attracted extensive attention because of its high operating voltage and high capacity density. Although its electrochemical properties have been extensively investigated, the fundamental charge compensation mechanism, that is, the cationic and anionic redox reactions, is still elusive. In this report, we have systematically investigated the transition metal and oxygen redox reactions of NaNMO nanoflakes using bulk-sensitive soft X-ray absorption spectroscopy and full-range mapping of resonant inelastic X-ray scattering from an atomic-level view. We show that the bulk Mn3+/Mn4+ redox couple emerges from the first discharge process with the increment of inactive Mn3+ upon cycling, which may have a negative effect on the cyclability. In contrast, the bulk Ni redox mainly stems from the Ni2+/Ni3+ redox couple, in contrast to the conventional wisdom of the Ni2+/Ni4+ redox couple. The quantitative analysis provides unambiguous evidence for the continuous reduction of the average valence state of Mn and Ni over extended cycles, leading to the voltage fading. In addition, we reveal that the oxygen anions also participate in the charge compensation process mainly through irreversible oxygen release rather than reversible lattice oxygen redox. Such understanding is vital for the precise design and optimization of NaNMO electrodes for rechargeable NIBs with outstanding performance.

20.
Nanoscale ; 11(13): 6182-6191, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30874273

RESUMO

Inorganic lead halide perovskite CsPbX3 (X = Cl, Br, or I) nanocrystals are promising candidate materials for light-emitting devices and optoelectronics. Mn-Doped CsPbX3 is of particular interest, as the Mn-doping introduces an additional emission band, making this material a promising white-light emitter. In this study, Mn-doped CsPb(Br/Cl)3 nanocrystals are prepared at room-temperature and ambient pressure. The chemical environment of Mn, and the luminescence of these nanocrystals are analyzed in detail using X-ray diffraction (XRD), extended X-ray absorption fine structure (EXAFS), X-ray absorption near-edge structure (XANES) and X-ray excited optical luminescence (XEOL). Although the introduction of Mn does not alter the long-range order of the CsPbX3 crystal, it leads to a local lattice contraction with the bond length of Mn-X much shorter than Pb-X. We also find excitation energy-dependence in both the intensity and wavelength of the perovskite excitonic emission band, while only in intensity of the Mn emission band. Detailed fitting of the XEOL reveals that the perovskite emission band is dual-channel, and it is the excitation energy-dependent intensity variation of these two channels that drives the observed red-shift of the combined emission band. Our findings also confirm that the Mn emission band is driven by exciton-Mn energy transfer and clarify the Mn chemical environment and the luminescence mechanism in Mn-doped CsPb(Br/Cl)3 nanocrystals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...