Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(40): 46023-46031, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36178786

RESUMO

Ionic flexible sensors (IFS) usually consist of an ionomer matrix and two conductive electrodes, the failure of which mostly originates from interfacial debonding between matrix and electrode layers. To improve electrode's adhesion and impedance matching with matrix, polymer binder or plasmonic heating technology is used to enhance the adhesion of electrodes, but there are technical challenges such as high resistance and harsh conditions. Herein, inspired by biological hair, we proposed a reliable and facile method to form AgNWs@Au-embedded Nafion flexible electrodes (AN FEs) for IFS without rigorous temperature and harsh conditions. Through integrating the spraying and electrodepositing Au method, we achieved that the AgNWs are partly embedded in the matrix layer for forming the embedded layer, similar to the root of biological hair, which is used to fix the FEs and collect the ion charges. The other parts of AgNWs exposed on the surface form the conductive mesh layer for transmitting the signal, analogous to the tip of biological hair. Compared with other AgNWs FEs, AN FEs exhibit high adhesion (∼358 kPa) and low sheet resistance (∼ 3.7 Ω/□), and high stabilities after 100 washing cycles, 200 s H2O2 corrosion or 1500s HCl corrosion. A self-powered IFS prepared by AN FEs can achieve dual sensing of mechanical strain and ambient humidity and still has promising sensing performance after being exposed to air for 2 months, which further indicates potential applications of the prepared FEs in next-generation multifunctional flexible electronic devices.


Assuntos
Nanofios , Eletrodos , Polímeros de Fluorcarboneto , Peróxido de Hidrogênio , Íons , Polímeros , Prata
2.
Chempluschem ; 87(2): e202100437, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35103423

RESUMO

Inspired by the sophisticated design of biological systems, interest in soft intelligent actuators has increased significantly in recent years, providing attractive strategies for the design of elaborate soft mechanical systems. For the construction of those soft actuators, carbon nanomaterials were extensively and successfully explored for the properties of highly conductive, electrothermal, and photothermal conversion. This review aims to trace the recent achievements for the material and structural design as well as the general mechanisms of the soft actuators, paying particular attention to the contribution of carbon nanomaterials resulted from their diversified interplaying properties, which realized the flexible and dexterous deformation responding to various environmental stimuli, including light, electricity and humidity. The properties and mechanisms of soft actuators are summarized and the potential for future applications and research are presented.

3.
Angew Chem Int Ed Engl ; 60(37): 20511-20517, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34272927

RESUMO

Developing self-oscillating soft actuators that enable autonomous, continuous, and directional locomotion is significant in biomimetic soft robotics fields, but remains great challenging. Here, an untethered soft photoactuators based on covalently-bridged black phosphorus-carbon nanotubes heterostructure with self-oscillation and phototactic locomotion under constant light irradiation is designed. Owing to the good photothermal effect of black phosphorus heterostructure and thermal deformation of the actuator components, the new actuator assembled by heterostructured black phosphorus, polymer and paper produces light-driven reversible deformation with fast and large response. By using this actuator as mechanical power and designing a robot configuration with self-feedback loop to generate self-oscillation, an inchworm-like actuator that can crawl autonomously towards the light source is constructed. Moreover, due to the anisotropy and tailorability of the actuator, an artificial crab robot that can simulate the sideways locomotion of crabs and simultaneously change color under light irradiation is also realized.

4.
ACS Nano ; 15(3): 5294-5306, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33650851

RESUMO

Soft actuators and microrobots that can move spontaneously and continuously without artificial energy supply and intervention have great potential in industrial, environmental, and military applications, but still remain a challenge. Here, a bioinspired MXene-based bimorph actuator with an asymmetric layered microstructure is reported, which can harness natural sunlight to achieve directional self-locomotion. We fabricate a freestanding MXene film with an increased and asymmetric layered microstructure through the graft of coupling agents into the MXene nanosheets. Owing to the excellent photothermal effect of MXene nanosheets, increased interlayer spacing favoring intercalation/deintercalation of water molecules and its caused reversible volume change, and the asymmetric microstructure, this film exhibits light-driven deformation with a macroscopic and fast response. Based on it, a soft bimorph actuator with ultrahigh response to solar energy is fabricated, showing natural sunlight-driven actuation with ultralarge amplitude and fast response (346° in 1 s). By utilizing continuous bending deformation of the bimorph actuator in response to the change of natural sunlight intensity and biomimetic design of an inchworm to rectify the repeated bending deformation, an inchwormlike soft robot is constructed, achieving directional self-locomotion without any artificial energy and control. Moreover, soft arms for lifting objects driven by natural sunlight and wearable smart ornaments that are combined with clothing and produce three-dimensional deformation under natural sunlight are also developed. These results provide a strategy for developing natural sunlight-driven soft actuators and reveal great application prospects of this photoactuator in sunlight-driven soft biomimetic robots, intelligent solar-energy-driven devices in space, and wearable clothing.

5.
RSC Adv ; 11(60): 37784-37800, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-35498066

RESUMO

In recent years, increasing attention has been paid to the impacts of environmental noises on living creatures as well as the accuracy and stability of precise instruments. Due to inherent properties induced by large wavelength, the attenuation and manipulation of low-frequency sound waves is quite difficult to realize with traditional acoustic absorbers, yet particularly critical to modern designs. The advent of acoustic metamaterials and intelligent materials provides possibilities of energy dissipation mechanisms other than viscous dissipation and heat conduction in conventional porous sound absorbers, and therefore inspires new strategies on the design of subwavelength-scale structures. This short review aims to trace the current advancement on the low-frequency sound absorption research utilizing intelligent materials and metamaterials, including Helmholtz resonators and acoustic metamaterials based on micro-perforated plates, porous media, and decorated membrane, along with the tunable absorbing structures regulated with the function of electroactive polymers or magnetically sensitive materials. The effective principles and prospects were concluded and presented for future investigations of subwavelength-scale acoustic structures.

6.
Polymers (Basel) ; 14(1)2021 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-35012104

RESUMO

Current ionic polymer-metal composite (IPMC) always proves inadequate in terms of large attenuation and short working time in air due to water leakage. To address this problem, a feasible and effective solution was proposed in this study to enhance IPMC performance operating in air by doping polyethylene oxide (PEO) with superior water retention capacity into Nafion membrane. The investigation of physical characteristics of membranes blended with varying PEO contents revealed that PEO/Nafion membrane with 20 wt% PEO exhibited a homogeneous internal structure and a high water uptake ratio. At the same time, influences of PEO contents on electromechanical properties of IPMCs were studied, showing that the IPMCs with 20 wt% PEO presented the largest peak-to-peak displacement, the highest volumetric work density, and prolonged stable working time. It was demonstrated that doping PEO reinforced electromechanical performances and restrained displacement attenuation of the resultant IPMC.

7.
J Mater Chem B ; 6(31): 5031-5038, 2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32254532

RESUMO

Soft actuators with large deformation and high output force in response to multi-stimuli are highly demanded for the development of biomimetic applications. Here, a bilayer actuator composed of spongy graphene with internal gasbag microstructures and the commercial polyimide adhesive tape is fabricated by a simple and fast method. This actuator produces large deformation, high output force, and dual-stimuli response, owing to the deformation of graphene micro-gasbags coupled with the thermal expansion of polyimide, and the electrothermal and photothermal properties of graphene. Experiments show that upon low voltage (16 V) stimulation the fabricated actuator with a length of 30 mm could generate a bending curvature of 0.55 cm-1 in 5 s, and can simultaneously produce high output force and lift an object 20 times heavier than its own weight. Moreover, a curvature of 0.45 cm-1 can be achieved for the actuator upon light irradiation for 10 s. Based on this bilayer actuator, diversely biomimetic motions including kicking a ball, grabbing a vegetable leaf, human hand movement, and creeping motion are realized, revealing its potential application in soft robotics, artificial muscles, wearable electronics, and biomedical devices. Besides the mechanical deformation output, a photo-to-electric generator is also assembled by associating this actuator with commonly triboelectric materials, further enriching the application range of soft actuators.

8.
J Phys Chem B ; 120(12): 3215-25, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-26977537

RESUMO

Electrical potential based on ion migration exists not only in natural systems but also in ionic polymer materials. In order to investigate the influence of ambient humidity on voltage response, classical Au-Nafion IPMC was chosen as the reference sample. Voltage response under a bending deformation was measured in two ways: first, continuous measurement of voltage response in the process of absorption and desorption of water to study the tendency of voltage variation at all water states; second, measurements at multiple fixed ambient humidity levels to characterize the process of voltage response quantitatively. Ambient humidity influences the voltage response mainly by varying water content in ionic polymer. Under a step bending, the amplitude of initial voltage peak first increases and then decreases as the ambient humidity and the inherent water content decrease. This tendency is explained semiquantitatively by mass storage capacity related to the stretchable state of the Nafion polymer network. Following the initial peak, the voltage shows a slow decay to a steady state, which is first characterized in this paper. The relative voltage decay during the steady state always decreases as the ambient humidity is lowered. It is ascribed to progressive increase of the ratio between the water molecules in the cation hydration shell to the free water. Under sinusoidal mechanical bending excitation in the range of 0.1-10 Hz, the voltage magnitude increases with frequency at high ambient humidity but decreases with frequency at low ambient humidity. The relationship is mainly controlled by the voltage decay effect and the response speed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...