Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 5(30): 18738-18745, 2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32775875

RESUMO

Water scarcity is one of the most critical problems that humans have to face. Working toward solving this problem, we have developed a thin-film composite (TFC) membrane using the modified molecular layer-by-layer (modified mLBL) method to fabricate polyamide (PA) active layers on different substrates. Besides, it has been found that graphene oxide (GO) contains abundant functional groups such as hydroxyl and epoxide groups, which are able to improve both the physical and chemical properties of the forward osmosis (FO) membrane. Thus, we have employed graphene oxide (GO) as the substrate and used the modified mLBL method to prepare active polydopamine/graphene oxide (PDA/GO) layers to enhance the water flux of the forward osmosis (FO) membrane. PDA/GO-coated layers could enhance the hydrophilic nature of the substrate and lower its surface roughness, which would facilitate the formation of the PA layer. Moreover, the PDA/GO coating can be applied to all substrates because of the high degree of adhesion of PDA to different substrates. In this study, the highly hydrophilic poly(vinylidene fluoride) membrane is superior in FO properties, with a water flux of 17.32 LMH and a reverse solute flux of 4.34 gMH. In addition, an excellent performance of 60.15 LMH and 14.88 gMH can be achieved when the pressure-retarded osmosis (PRO) test mode with a draw solution concentration of 2.0 M is used in the test. It shows that the membrane prepared using the novel method showed excellent FO performance, which has high potential in industrial applications such as desalination.

2.
iScience ; 23(5): 101065, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32361274

RESUMO

Excessive phosphorus in water is the primary culprit for eutrophication, which causes approximately $2.2 billion annual economic loss in the United States. This study demonstrates a phosphate-selective sustainable method by adopting Garcinia subelliptica leaves as a natural bio-template, where MgMn-layered double hydroxide (MgMn-LDH) and graphene oxide (GO) can be grown in situ to obtain L-GO/MgMn-LDH. After calcination, the composite shows a hierarchical porous structure and selective recognition of phosphate, which achieves significantly high and recyclable selective phosphate adsorption capacity and desorption rate of 244.08 mg-P g-1 and 85.8%, respectively. The detail variation of LDHs during calcination has been observed via in situ transmission electron microscope (TEM). Moreover, the roles in facilitating phosphate adsorption and antimicrobial ability of chemical constituents in Garcinia subelliptica leaves, biflavonoids, and triterpenoids have been investigated. These results indicate the proposed bio-templated adsorbent is practical and eco-friendly for phosphorus sustainability in commercial wastewater treatment.

3.
J Colloid Interface Sci ; 446: 352-8, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25576198

RESUMO

Titanium dioxide (TiO2)/ activated carbon (AC) composite materials, as capacitive deionization electrodes, were prepared by a two-step microwave-assisted ionothermal synthesis method. The electrosorption capacity of the composite electrodes was studied and the effects of AC characteristics were explored. These effects were investigated by multiple analytical techniques, including X-ray photoelectron spectroscopy, thermogravimetry analysis and electrochemical impedance spectroscopy, etc. The experimental results indicated that the electrosorption capacity of the TiO2/AC composite electrode is dependent on the characteristics of AC including the pore structure and the surface property. An enhancement in electrosorption capacity was observed for the TiO2/AC composite electrode prepared from the AC with higher mesopore content and less hydrophilic surface. This enhancement is due to the deposition of anatase TiO2 with suitable amount of Ti-OH. On the other hand, a decline in electrosorption capacity was observed for the TiO2/AC composite electrode prepared from the AC with higher micropore content and highly hydrophilic surface. High content of hydrogen bond complex formed between the functional group on hydrophilic surface with H2O, which will slow down the TiO2 precursor-H2O reaction. In such situation, the effect of TiO2 becomes unfavorable as the loading amount of TiO2 is less and the micropore can also be blocked.

4.
Bioresour Technol ; 100(5): 1875-7, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19006662

RESUMO

This study investigated the effects of soluble organic matters on membrane fouling characteristics, using silt density index (SDI) and modified fouling index (MFI) to evaluate the fouling potential. Experimental results demonstrated that humic acid had significant effects on membrane fouling indexes. When its concentration was in the range of 0.01-0.05 mg/L, the SDI(15) and MFI were 2.9-3.9 and 5.4-13.8s/L(2), respectively. According to the linear equations of MFI measurements, the fouling potential was in the order of humic acid>nucleic acid protein>glucose. Moreover, the molecular weight of dextran played an important role in membrane fouling indexes. Furthermore, a mathematical analysis of filtration experiments based on saturation curve was developed in this study. The maximum accumulated filtrate (V(max)) and the constant of filtration (k(f)) could be obtained to improve the precision of membrane fouling prediction.


Assuntos
Filtração/estatística & dados numéricos , Substâncias Húmicas/análise , Membranas Artificiais , Purificação da Água/métodos , Adsorção , Filtração/métodos , Glucose/análise , Ácidos Nucleicos/análise , Proteínas/análise
5.
Nanotechnology ; 19(4): 045604, 2008 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-21817510

RESUMO

This study investigates the microstructures of multi-walled carbon nanotubes (MWNTs)/TiO(2) nanocomposites, obtained by sol-gel and hydrothermal processes. The synthesized nanocomposite materials were characterized by x-ray diffractometry (XRD), Brunauer-Emmett-Teller (BET) adsorption analysis, transmittance electron microscopy (TEM), scanning electron microscopy (SEM), photoluminescence (PL) spectroscopy, and x-ray photoelectron spectroscopy (XPS). The effects of the synthetic procedures and MWNTs on the morphology and photocatalytic activity of the nanocomposites were studied. The photocatalytic activity of the MWNTs/TiO(2) nanocomposite was elucidated based on the photooxidation of NO(x) under UV light illumination. A fleck-like and well dispersed TiO(2) microstructure on the surface of the MWNTs was observed in the sol-gel system, while compact and large aggregated particles were found in the hydrothermal procedure. The nanocomposite prepared by the sol-gel system exhibits better photocatalytic activity for NO oxidation (from 20.52 to 32.14%) than that prepared by the hydrothermal method (from 22.58 to 26.51%) with the same MWNT loading (from 0 to 8 wt%), respectively. The optimal MWNT content in the nanocomposite was considered at 8 wt%. Additionally, results confirm that the introduction of MWNTs will cause the NO(2) to be more consumed than NO in the photocatalytic experiments, leading to more complete NO(x) photooxidation. These observations indicate that the different TiO(2) distributions on the MWNT surfaces and MWNT contents in the materials would determine the morphology, the physicochemical and photocatalytic characteristics for the nanocomposite materials.

6.
Nanotechnology ; 19(37): 375305, 2008 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-21832549

RESUMO

This study fabricates dye-sensitized solar cells (DSSCs) based on TiO(2)/multi-walled carbon nanotube (MWCNT) nanocomposite photoanodes obtained by the modified acid-catalyzed sol-gel procedure. Results show that incorporating MWCNTs into a TiO(2)-based electrode efficiently improves the physicochemical properties of the solar cell. The results of dye adsorption and cell performance measurements indicate that introducing MWCNTs would improve the roughness factor (from 834 to 1267) of the electrode and the charge recombination of electron/hole (e(-)/h(+)) pairs. These significant changes could lead to higher adsorbed dye quantities, photocurrent and DSSC cell performance. Nevertheless, a higher loading of MWCNTs causes light-harvesting competition that affects the light adsorption of the dye-sensitizer, and consequently reduces the cell efficiency. This study suggests an optimum MWCNT loading in the electrode of 0.3 wt%, and proposes a sol-gel synthesis procedure as a promising method of preparing the TiO(2)-based nanocomposite.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...