Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 296: 100484, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33647316

RESUMO

Mutations in the human gene encoding the neuron-specific Eag1 voltage-gated K+ channel are associated with neurodevelopmental diseases, indicating an important role of Eag1 during brain development. A disease-causing Eag1 mutation is linked to decreased protein stability that involves enhanced protein degradation by the E3 ubiquitin ligase cullin 7 (CUL7). The general mechanisms governing protein homeostasis of plasma membrane- and endoplasmic reticulum (ER)-localized Eag1 K+ channels, however, remain unclear. By using yeast two-hybrid screening, we identified another E3 ubiquitin ligase, makorin ring finger protein 1 (MKRN1), as a novel binding partner primarily interacting with the carboxyl-terminal region of Eag1. MKRN1 mainly interacts with ER-localized immature core-glycosylated, as well as nascent nonglycosylated, Eag1 proteins. MKRN1 promotes polyubiquitination and ER-associated proteasomal degradation of immature Eag1 proteins. Although both CUL7 and MKRN1 contribute to ER quality control of immature core-glycosylated Eag1 proteins, MKRN1, but not CUL7, associates with and promotes degradation of nascent, nonglycosylated Eag1 proteins at the ER. In direct contrast to the role of CUL7 in regulating both ER and peripheral quality controls of Eag1, MKRN1 is exclusively responsible for the early stage of Eag1 maturation at the ER. We further demonstrated that both CUL7 and MKRN1 contribute to protein quality control of additional disease-causing Eag1 mutants associated with defective protein homeostasis. Our data suggest that the presence of this dual ubiquitination system differentially maintains Eag1 protein homeostasis and may ensure efficient removal of disease-associated misfolded Eag1 mutant channels.


Assuntos
Canais de Potássio Éter-A-Go-Go/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Ribonucleoproteínas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Animais , Células Cultivadas , Retículo Endoplasmático/metabolismo , Proteólise , Proteostase , Ratos , Ratos Sprague-Dawley , Técnicas do Sistema de Duplo-Híbrido
2.
Sci Rep ; 7: 40825, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28098200

RESUMO

Mammalian Eag1 (Kv10.1) potassium (K+) channels are widely expressed in the brain. Several mutations in the gene encoding human Eag1 K+ channel have been associated with congenital neurodevelopmental anomalies. Currently very little is known about the molecules mediating protein synthesis and degradation of Eag1 channels. Herein we aim to ascertain the protein degradation mechanism of rat Eag1 (rEag1). We identified cullin 7 (Cul7), a member of the cullin-based E3 ubiquitin ligase family, as a novel rEag1 binding partner. Immunoprecipitation analyses confirmed the interaction between Cul7 and rEag1 in heterologous cells and neuronal tissues. Cul7 and rEag1 also exhibited significant co-localization at synaptic regions in neurons. Over-expression of Cul7 led to reduced protein level, enhanced ubiquitination, accelerated protein turn-over, and decreased current density of rEag1 channels. We provided further biochemical and morphological evidence suggesting that Cul7 targeted endoplasmic reticulum (ER)- and plasma membrane-localized rEag1 to the proteasome and the lysosome, respectively, for protein degradation. Cul7 also contributed to protein degradation of a disease-associated rEag1 mutant. Together, these results indicate that Cul7 mediates both proteasomal and lysosomal degradations of rEag1. Our findings provide a novel insight to the mechanisms underlying ER and peripheral protein quality controls of Eag1 channels.


Assuntos
Proteínas Culina/metabolismo , Canais de Potássio Éter-A-Go-Go/metabolismo , Lisossomos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Membrana Celular/metabolismo , Proteínas Culina/genética , Cicloeximida/farmacologia , Retículo Endoplasmático/metabolismo , Canais de Potássio Éter-A-Go-Go/genética , Células HEK293 , Humanos , Leupeptinas/farmacologia , Neurônios/metabolismo , Complexo de Endopeptidases do Proteassoma/química , Ligação Proteica , Estabilidade Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA