Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 15(34): 14146-14154, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37591823

RESUMO

Chirality plays an important role in biological processes, and enantiomers often possess similar physical properties and different physiological functions. Thus, chiral detection of enantiomers has become a hot topic in recent years, and methods to enhance chiral molecular recognition are in urgent demand. In this work, a polarization detection method was used for different chiral drugs based on a specially designed metasurface composed of asymmetric double-opened rings and the surface enhancement effect of gold nanoparticles (GNPs). The experiment results show that the frequency shifts caused by the nearfield interaction of the metasurface and biomolecules have been significantly improved by GNPs, and both the limit of detection and detection precision of the metasurface can reach the 10-5 g ml-1 level. Moreover, the polarization sensing characterized by right circular polarization (RCP), the polarization elliptical angle (PEA), and the polarization rotation angle (PRA) shows that the enantiomers of three drugs can be distinguished, especially using the PEA spectrum; the maximum difference between enantiomers is over 30° with a precision of 6.6 × 10-7 g mL-1. Our THz polarization sensing and the GNP enhancement method inspire an efficient strategy for the highly sensitive detection of enantiomers.


Assuntos
Ouro , Nanopartículas Metálicas
2.
Opt Lett ; 48(7): 1682-1685, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37221740

RESUMO

We experimentally demonstrate a dynamic terahertz (THz) chiral device based on a composite structure of anisotropic liquid crystals (LCs) sandwiched between a bilayer metasurface. The device supports the symmetric mode and antisymmetric mode under the incidence of left- and right-circular polarized waves, respectively. The different coupling strengths of the two modes reflect the chirality of the device, and the anisotropy of the LCs can change the coupling strength of the modes, which brings tunability to the chirality of the device. The experimental results show that the circular dichroism of the device can be dynamically controlled from 28 dB to -32 dB (i.e., inversion regulation) at approximately 0.47 THz and from -32 dB to 1 dB (i.e., switching regulation) at approximately 0.97 THz. Moreover, the polarization state of the output wave is also tunable. Such flexible and dynamic manipulation of THz chirality and polarization might build an alternative pathway for complex THz chirality control, high-sensitivity THz chirality detection, and THz chiral sensing.

3.
Biomed Opt Express ; 14(3): 1096-1106, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36950227

RESUMO

The efficient sensing of amino acids, especially the distinction of their chiral enantiomers, is important for biological, chemical, and pharmaceutical research. In this work, a THz phase shift sensing method was performed for amino acid detection based on a polarization-dependent electromagnetically induced transparency (EIT) metasurface. More importantly, a method for binding the specific amino acids to the functional proteins modified on the metasurface was developed based on the isoelectric point theory so that the specific recognition for Arginine (Arg) was achieved among the four different amino acids. The results show that via high-Q phase shift, the detection precision for L-Arg is 2.5 × 10-5 g /ml, much higher than traditional sensing parameters. Due to the specific electrostatic adsorption by the functionalized metasurface to L-Arg, its detection sensitivity and precision are 22 times higher than the other amino acids. Furthermore, by comparing nonfunctionalized and functionalized metasurfaces, the D- and L-chiral enantiomers of Arg were distinguished due to their different binding abilities to the functionalized metasurface. Therefore, this EIT metasurface sensor and its specific binding method improve both detection precision and specificity in THz sensing for amino acids, and it will promote the development of THz highly sensitive detection of chiral enantiomers.

4.
Opt Express ; 31(2): 1269-1281, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785166

RESUMO

Active manipulation of terahertz (THz) beam deflection and intensity is highly desired for possible applications in wireless communication, radar, and remote sensing. Here, by integrating the phase-gradient metasurfaces and tunable liquid crystal materials, we demonstrate an active THz beam deflection device based on polarization mode conversion. The resonant modes in the photonic cavity formed by the double-layer metasurface and the tunable anisotropic liquid crystal material in the cavity not only improve the polarization conversion efficiency of the device, but also actively regulate the resonance matching conditions. As a consequence, a beam deflection of 47.5° with 50% diffraction intensity at 0.69 THz is achieved in the x-to-y polarization conversion mode, and this beam can be actively modulated with an ultrahigh modulation depth of 99.6% by rotating the anisotropic optical axis of liquid crystals. Moreover, the proposed device can also work as the deflection of 32.5° in the y-to-x polarization conversion mode at 0.94 THz with a maximum diffraction intensity of 38% and an intensity modulation depth of 97.8%. This work provides a new approach based on liquid crystal photonic devices for wavefront manipulation and active modulation for THz waves.

5.
PLoS One ; 18(2): e0279248, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36827379

RESUMO

Marine ships are the transport vehicle in the ocean and instance segmentation of marine ships is an accurate and efficient analysis approach to achieve a quantitative understanding of marine ships, for example, their relative locations to other ships or obstacles. This relative spatial information is crucial for developing unmanned ships to avoid crashing. Visible light imaging, e.g. using our smartphones, is an efficient way to obtain images of marine ships, however, so far there is a lack of suitable open-source visible light datasets of marine ships, which could potentially slow down the development of unmanned ships. To address the problem of insufficient datasets, here we built two instance segmentation visible light datasets of marine ships, MariBoats and MariBoatsSubclass, which could facilitate the current research on instance segmentation of marine ships. Moreover, we applied several existing instance segmentation algorithms based on neural networks to analyze our datasets, but their performances were not satisfactory. To improve the segmentation performance of the existing models on our datasets, we proposed a global and local attention mechanism for neural network models to retain both the global location and semantic information of marine ships, resulting in an average segmentation improvement by 4.3% in terms of mean average precision. Therefore, the presented new datasets and the new attention mechanism will greatly advance the marine ship relevant research and applications.


Assuntos
Redes Neurais de Computação , Navios , Algoritmos , Semântica , Processamento de Imagem Assistida por Computador/métodos
6.
Opt Lett ; 48(2): 440-443, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36638478

RESUMO

The highly sensitive detection and identification of chiral biochemical substances have attracted extensive attention. Terahertz (THz) spectroscopy and sensing technology have obvious advantages in non-contact and label-free biochemical detection, but the THz chiral spectral response of chiral biochemical substances is too weak to realize highly sensitive chiral enantiomer recognition. Herein, we propose a method of spin beam deflection and separation by using a Pancharatnam-Berry (PB) metasurface to enhance the THz chirality response of chiral amino acids, realizing the identification of chiral enantiomers of the same kind of amino acid. The conjugate spin transmittances and circular dichroism (CD) spectra of d- and l-tyrosine samples on the PB metasurface were measured by an angle-resolved THz time-domain polarization spectroscopy system, and their CD values reached 16.4° and -11.6° at a deflection angle of ±33°, respectively, which were enhanced by about 9.3 and 11.9 times compared with the maximum CD values of the sample without the metasurface. Therefore, this THz chiral sensing method based on a PB metasurface has great potential in highly sensitive chirality identification and enhancement for chiral substances.


Assuntos
Aminoácidos , Espectroscopia Terahertz , Dicroísmo Circular
7.
Opt Lett ; 48(2): 469-472, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36638486

RESUMO

Metasurfaces for wavefront shaping rely on local phase modulation in subwavelength unit cells, which show limited degree of freedom in dealing with complex and multiple beam transformation. Here, we assign multiple beams into different diffraction orders coaxially located along the same direction, whose wavefronts are tailored by optimizing the diffraction coefficients in two orders and two polarization states of a supercell. By evenly splitting the energy into two orders and adjusting the zeroth-order diffraction phase, a Bessel beam and a vortex beam are simultaneously generated in the near field and far field along a coaxial direction. The effectiveness of the method is validated by the excellent agreement between the simulation and experimental characterization of the two beams.

8.
Adv Sci (Weinh) ; 10(4): e2204916, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36373726

RESUMO

In this work, the gyrotropic semiconductor InSb into the twisted bilayer metasurface to form a magneto-optical moiré metasurface is introduced. Through the theoretical analysis, the "moiré angle" is developed in which case the nonreciprocity and chirality with the spin-conjugate asymmetric transmission are obtained due to the simultaneous breaking of both time-reversal symmetry and spatial mirror symmetry. The experiments confirm that the chirality can be actively manipulated by rotating the twisted angle and the external magnetic field, realizing spin-conjugate asymmetric transmission. Meanwhile, the two spin states also realize the nonreciprocal one-way transmission, and their isolation spectra are also spin-conjugate asymmetric: one is enhanced up to 48 dB, and the other's bandwidth is widened to over 730 GHz. This spin-conjugate symmetry-breaking effect in the MOMM brings a combination of time-space asymmetric transmission, and it also provides a new scheme for the implementation of high-performance THz chirality controllers and isolators.

9.
Micromachines (Basel) ; 13(10)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36295991

RESUMO

Terahertz (THz) technology offers unparalleled opportunities in a wide variety of applications, ranging from imaging and spectroscopy to communications and quality control, where lack of efficient modulation devices poses a major bottleneck. Spatial modulation allows for dynamically encoding various spatial information into the THz wavefront by electrical or optical control. It plays a key role in single-pixel imaging, beam scanning and wavefront shaping. Although mature techniques from the microwave and optical band are not readily applicable when scaled to the THz band, the rise of metasurfaces and the advance of new materials do inspire new possibilities. In this review, we summarize the recent progress of THz spatial light modulators from the perspective of functional materials and analyze their modulation principles, specifications, applications and possible challenges. We envision new advances of this technique in the near future to promote THz applications in different fields.

10.
Appl Opt ; 61(21): 6391-6397, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-36256255

RESUMO

Terahertz (THz) waves have attracted much attention in the field of biosensing due to advantages including non-destructiveness, being label-free, and high-sensitivity detection. Here we have experimentally demonstrated a THz polarization sensing method based on reflective metasurface sensors for detecting concentrations of protein solutions and their crystallization process. The protein with varying concentrations has been detected by five different polarization parameters, which show different spectral responses and sensing sensitivities. The sensing accuracy can reach the order of ng/mm2. Furthermore, the crystallization process of the protein sample from the dissolved state to the crystalline has been dynamically measured by polarization sensing, of which the highest sensitivity can reach 0.67 °/%. Therefore, this new sensing platform can have broad development prospects in the trace matter detection of the biological sample.


Assuntos
Cristalização , Técnicas Biossensoriais
11.
Opt Lett ; 47(11): 2879-2882, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35648954

RESUMO

Metasurfaces transform the wavefront by spatially varying the amplitude or phase of the incoming beam. Instead of encoding such variation by subwavelength unit cells, it is achievable over diffraction engineering of supercell structures, which outperforms the unit-cell method when the spatial gradient is large. In addition to tight focusing, here we apply this method to achieve plane wave-to-Bessel beam transformation and point-to-point focusing at terahertz frequencies. The Bessel beam has a small beam waist (0.57λ) and long depth of focus (9.1λ) for subwavelength-resolution imaging over a long distance. The point-to-point focusing changes the divergence angle from 16° to 70°. Both devices are validated by numerical simulations and experimental results with good agreement.

12.
Biomed Opt Express ; 13(1): 209-221, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35154865

RESUMO

Protein denaturation has very important research value in nutrition, biomedicine, and the food industry, which is caused by the changes in the molecular structure of the protein. Since the collective vibrational and torsional modes of protein molecules are within the terahertz (THz) frequency range, THz spectroscopy can characterize the protein denaturation with several advantages of non-contact, label-free, real-time, and non-destructive. Therefore, we proposed a reflective THz time-domain polarization spectroscopy sensing method, and use a flexible twisted dual-layer metasurface film as a sensor to realize the thermal denaturation sensing, concentration sensing, and types identification of protein aqueous solutions. The experiment tested three proteins (bovine serum albumin, whey protein, and ovalbumin), and the results show that: for the thermal denaturation sensing, its detection sensitivity can reach 6.30 dB/% and the detection accuracy is 0.77%; for the concentration sensing, the detection sensitivity and detection accuracy reach 52.9 dB·mL/g and 3.6·10-5 g/mL, respectively; in addition, different protein types can be distinguished by the difference of the circular polarization spectra.

13.
Opt Lett ; 47(4): 818-821, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35167533

RESUMO

Multifunctional, high-efficiency, and active manipulation devices are significant for terahertz (THz) technology and application. In this Letter, a stacked-graphene meta-atom (SGM) structure is investigated, which is composed of periodically patterned graphene in the 2D plane and stacked graphene-dielectric layers perpendicularly to the plane. This structure not only has strong THz artificial anisotropy but also enhances the cyclotron resonance response of graphene to a THz wave under an external magnetic field (EMF). Based on these two characteristics, the SGM can realize dynamic conversion between two functions for the manipulation of THz spin chiral states under different EMFs: from the reciprocal spin-flip without EMF to nonreciprocal spin-selection with EMF. Furthermore, a Pancharatnam-Berry (P-B) metasurface composed of the SGMs with different discrete orientation angles has been designed, which achieves active conversion between THz spin chiral beam deflection and the nonreciprocal one-way transmission for two conjugated spin beams, dynamically manipulated by both the biased voltage and EMF. The spin-select isolation is 42.3 dB with a transmission efficiency of over 70% at 1.38 THz. This manipulation mechanism of the spin beam and related devices has great potential in future THz communication, dynamical imaging, and radar scanning systems.

14.
Opt Lett ; 47(23): 6101-6104, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37219182

RESUMO

An all-nonmetal metamaterial (ANM) terahertz device with a silicon bowtie structure has been developed, which has comparable efficiency to that of its metallic counterparts, and better compatibility with modern semiconductor fabrication processes. Moreover, a highly tunable ANM with the same structure was successfully fabricated through integration with a flexible substrate, which demonstrated large tunability over a wide frequency range. Such a device can be used in terahertz systems for numerous applications, and is a promising substitute for conventional metal-based structures.

15.
Appl Opt ; 60(30): 9530-9534, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34807096

RESUMO

In this paper, we demonstrate an intensity-tunable THz bandpass filter by introducing liquid crystal (LC) integrated with asymmetric frequency selective surface (FSS) and subwavelength metal gratings. Here, the tunable THz filter is derived from the inner polarization state conversion in composited devices, and the incident linear polarization can be converted into 90° orthogonal components. By controlling the LC orientation under the applied electric field with the metamaterial electrodes, the polarization conversion process can be actively modulated; thus, the polarization-dependent and tunable THz bandpass filter is achieved. Based on the multilayer design and the inner Fabry-Perot-like resonance mechanism, the LC-integrated metamaterials filter presents better filtering performance than the single FSS filter, and the Q-value is improved from 7.7 to 13.8 at the working frequency. Our simulated work paves the way for the design of new and efficient THz filters.

16.
Opt Express ; 29(15): 23540-23548, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34614618

RESUMO

We report the magneto-optical Faraday response of bismuth-gadolinium-substituted rare-earth iron garnet at terahertz frequencies ranging from 100 GHz to 1.2 THz. The maximum transmittance of ±45° component is about 60% near the frequency point of 0.63 THz. When the external magnetic field change from -100 mT to +100 mT, the Faraday rotation angle is between -6° and +7.5°. The overall change of ellipticity is relatively small. The maximum value of the Verdet constant is about 260 °/mm/T at 0.1 THz and then gradually decreases to 80 °/mm/T at 1.2 THz. Within the considered frequency range, the thick film exhibits magnetically tunable, non-reciprocal characters and a strong magneto-optical effect within a small external magnetic field at room temperature, which will be widely used for the terahertz isolators, circulators, nonreciprocal phase shifters, and magneto-optical modulators.

17.
Anal Chim Acta ; 1180: 338871, 2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34538326

RESUMO

Terahertz (THz) waves have the advantages of being noninvasive and nonionizing because of their low radiation energy, so they have potential applications in the biomedical field, but thus far, those have been limited by the strong absorption in water and low detection sensitivity. Herein, we propose a reflective THz time-domain circular dichroism (CD) sensing system and a silicon subwavelength grating as the microstructure sensor to generate and detect the THz chiral polarization states, to realize quantitative detection of living cell numbers and qualitative identification of cell kinds in a liquid environment. Three kinds of hepatoma cell proliferation and inhibition with different concentrations of aspirin were measured by this sensing method, and the experimental results show that the sensitivities for CD resonance intensity and frequency shift can reach 3.44 dB mL/106 cells and 5.88 GHz mL/106 cells, respectively, and the minimum detection concentration is in the order of 104 cells/mL for THz detection in a liquid environment for the first time. This new THz sensing system and sensing method are expected to become a broadband, label-free, noncontact, real-time detection technology that can be used for quantitative detection and qualitative identification of cells or other active biochemical materials.


Assuntos
Neoplasias , Água , Dicroísmo Circular , Vibração
18.
Appl Opt ; 60(19): 5716-5722, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34263866

RESUMO

In this paper, we propose an ultrasensitive microfluidic refractive index sensor for detecting high-absorption analyte. The sensor is based on heterogeneous dual-core photonic crystal fiber structure and operates in the terahertz (THz) regime. ZeonexE48R is chosen as the background material. The dual-core structure is composed of the gradient porous core and the microfluidic channel. Simulation results show that before infiltrating a liquid analyte, a highly stable modal birefringence can be obtained around 2.0×10-2 from 0.5 to 2 THz, along with the effective material losses of less than 0.182/cm for both the x- and y-polarization modes. After infiltration, this device can be employed for accurate refractive index (RI) sensing owing to the cross point selective coupling effect between the two core modes. This sensor offers RI sensitivities of 78.095 THz/RIU and 110.931 THz/RIU within dynamic measurement ranges from 1.41 to 1.429 for x-polarization mode and from 1.435 to 1.449 for y-polarization mode, respectively, and the measurable refractive index range reaches 0.0327. Our research gives a unique insight into the sensing mechanism for detecting high-absorption analyte in the THz band, which has broad application prospects for high-accuracy dynamic sensing in the fields of chemistry, biomedicine, and real-time environmental monitoring.

19.
Micromachines (Basel) ; 12(3)2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33801056

RESUMO

Based on the graphene floating gate, a tunable terahertz metamaterial absorber is proposed. Compared with the traditional graphene-dielectric-metal absorber, our absorber has the property of being non-volatile and capacity for anti-interference. Using the finite element method, the paper investigates the absorption spectra, the electric field energy distribution, the tunability and the physical mechanism. In addition, we also analyse the influence of geometry, polarization and incident angles on the absorption. Simulation results show that the bandwidth of the absorption above 90% can reach up to 2.597 THz at the center frequency of 3.970 THz, and the maximum absorption can be tuned continuously from 14.405% to 99.864% by controlling the Fermi level from 0 eV to 0.8 eV. Meanwhile, the proposed absorber has the advantages of polarization insensitivity and a wide angle, and has potential applications in imaging, sensing and photoelectric detection.

20.
Opt Express ; 29(6): 8824-8833, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33820324

RESUMO

Herein, we fabricated and investigated the carbon nanotube (CNT) integrated metamaterial for orthogonal polarization control in the THz regime, which is composed of a sandwiched CNT layer with the adjacent metal gratings in the sub-wavelength integration. Under the mechanism of multilayer polarization selection and multiple reflections in CNT constructed micro-cavity, the perfect orthogonal polarization conversion is achieved and the transmittance spectrum presents multi-band peaks and valleys, which coincide with the theoretical Fabry-Perot resonance. Besides, by controlling the layer number and orientations of the middle CNT, the active modulation of the amplitude and phase in compound metamaterials are realized. Based on the simulation of CNT in the grating model, it obtains a good agreement with the experimental results, and the simulated electric field distribution also confirmed the inner polarization conversion mechanism. This work combines nanomaterials with optical microstructures and successfully applies them to the THz polarization control, which will bring new ideas for design novel THz devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...