Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Commun Med (Lond) ; 3(1): 91, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353603

RESUMO

BACKGROUND: Point-of-care diagnostic devices, such as lateral-flow assays, are becoming widely used by the public. However, efforts to ensure correct assay operation and result interpretation rely on hardware that cannot be easily scaled or image processing approaches requiring large training datasets, necessitating large numbers of tests and expert labeling with validated specimens for every new test kit format. METHODS: We developed a software architecture called AutoAdapt POC that integrates automated membrane extraction, self-supervised learning, and few-shot learning to automate the interpretation of POC diagnostic tests using smartphone cameras in a scalable manner. A base model pre-trained on a single LFA kit is adapted to five different COVID-19 tests (three antigen, two antibody) using just 20 labeled images. RESULTS: Here we show AutoAdapt POC to yield 99% to 100% accuracy over 726 tests (350 positive, 376 negative). In a COVID-19 drive-through study with 74 untrained users self-testing, 98% found image collection easy, and the rapidly adapted models achieved classification accuracies of 100% on both COVID-19 antigen and antibody test kits. Compared with traditional visual interpretation on 105 test kit results, the algorithm correctly identified 100% of images; without a false negative as interpreted by experts. Finally, compared to a traditional convolutional neural network trained on an HIV test kit, the algorithm showed high accuracy while requiring only 1/50th of the training images. CONCLUSIONS: The study demonstrates how rapid domain adaptation in machine learning can provide quality assurance, linkage to care, and public health tracking for untrained users across diverse POC diagnostic tests.


It can be difficult to correctly interpret the results of rapid diagnostic tests that give a visual readout, such as COVID rapid tests. We developed a computational algorithm to interpret rapid test results using an image taken by a smartphone camera. This algorithm can easily be adapted for use on results from different test kits. The algorithm was accurate at interpreting results obtained by members of the public using various COVID rapid tests and diagnostic tests with similar outputs used for other infections. The use of this algorithm should enable accurate interpretation of rapid diagnostic tests by members of the public and hence enable improved medical care.

2.
IEEE Trans Pattern Anal Mach Intell ; 44(2): 924-939, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-32750841

RESUMO

Deep embedding learning plays a key role in learning discriminative feature representations, where the visually similar samples are pulled closer and dissimilar samples are pushed away in the low-dimensional embedding space. This paper studies the unsupervised embedding learning problem by learning such a representation without using any category labels. This task faces two primary challenges: mining reliable positive supervision from highly similar fine-grained classes, and generalizing to unseen testing categories. To approximate the positive concentration and negative separation properties in category-wise supervised learning, we introduce a data augmentation invariant and instance spreading feature using the instance-wise supervision. We also design two novel domain-agnostic augmentation strategies to further extend the supervision in feature space, which simulates the large batch training using a small batch size and the augmented features. To learn such a representation, we propose a novel instance-wise softmax embedding, which directly perform the optimization over the augmented instance features with the binary discrmination softmax encoding. It significantly accelerates the learning speed with much higher accuracy than existing methods, under both seen and unseen testing categories. The unsupervised embedding performs well even without pre-trained network over samples from fine-grained categories. We also develop a variant using category-wise supervision, namely category-wise softmax embedding, which achieves competitive performance over the state-of-of-the-arts, without using any auxiliary information or restrict sample mining.


Assuntos
Algoritmos , Atenção
3.
J Clin Med ; 10(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34300210

RESUMO

Although a range of pharmacological interventions is available, it remains uncertain which treatment for osteoporosis is more effective. This network meta-analysis study aimed to compare different drug efficacy and safety in randomized controlled trials (RCTs) for the treatment of postmenopausal osteoporosis. PubMed, EMBASE, MEDLINE, Clinicaltrial.gov, Cochrane library, Google scholar were searched up to 31 October 2020. Randomized placebo-controlled trials that reported measures of bone mineral density (BMD) percentage change and/or numbers of adverse events of postmenopausal osteoporosis patients were included. Network meta-analysis was conducted using frequentist approach. Ninety-four RCTs comprising 15,776 postmenopausal osteoporosis females were included in the network meta-analysis. Compared with placebo, most interventions showed increase in BMD change. According to surfaces under the cumulative ranking curves (SUCRAs), strontium ranelate, fluoride, and hormone replacement therapy were most effective in increasing total hip, lumbar spine, and distal radius BMD, respectively. Parathyroid hormone (PTH) was most effective in preventing new hip fracture. When taking into account all anatomic sites, bisphosphonate (BP), monoclonal antibody (mAb), and fluoride have a balanced efficacy in increasing BMD at all sites. Considering both the effectiveness of increasing BMD and preventing hip fracture, mAb, BP, and PTH are more favorable among all interventions. The treatment effects of different medications on BMD percentage change are anatomic site-dependent. After weighing anti-osteoporosis treatment efficacy against risk of complications, BP and mAb are the more favorable interventions to increase BMD at all sites and reduce the risks of hip fracture and death.

4.
IEEE Trans Pattern Anal Mach Intell ; 43(1): 347-359, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31283493

RESUMO

We focus on grounding (i.e., localizing or linking) referring expressions in images, e.g., "largest elephant standing behind baby elephant". This is a general yet challenging vision-language task since it does not only require the localization of objects, but also the multimodal comprehension of context - visual attributes (e.g., "largest", "baby") and relationships (e.g., "behind") that help to distinguish the referent from other objects, especially those of the same category. Due to the exponential complexity involved in modeling the context associated with multiple image regions, existing work oversimplifies this task to pairwise region modeling by multiple instance learning. In this paper, we propose a variational Bayesian method, called Variational Context, to solve the problem of complex context modeling in referring expression grounding. Specifically, our framework exploits the reciprocal relation between the referent and context, i.e., either of them influences estimation of the posterior distribution of the other, and thereby the search space of context can be greatly reduced. In addition to reciprocity, our framework considers the semantic information of context, i.e., the referring expression can be reproduced based on the estimated context. We also extend the model to unsupervised setting where no annotation for the referent is available. Extensive experiments on various benchmarks show consistent improvement over state-of-the-art methods in both supervised and unsupervised settings.

5.
IEEE Trans Image Process ; 28(4): 1720-1731, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30452369

RESUMO

Image annotation aims to annotate a given image with a variable number of class labels corresponding to diverse visual concepts. In this paper, we address two main issues in large-scale image annotation: 1) how to learn a rich feature representation suitable for predicting a diverse set of visual concepts ranging from object, scene to abstract concept and 2) how to annotate an image with the optimal number of class labels. To address the first issue, we propose a novel multi-scale deep model for extracting rich and discriminative features capable of representing a wide range of visual concepts. Specifically, a novel two-branch deep neural network architecture is proposed, which comprises a very deep main network branch and a companion feature fusion network branch designed for fusing the multi-scale features computed from the main branch. The deep model is also made multi-modal by taking noisy user-provided tags as model input to complement the image input. For tackling the second issue, we introduce a label quantity prediction auxiliary task to the main label prediction task to explicitly estimate the optimal label number for a given image. Extensive experiments are carried out on two large-scale image annotation benchmark datasets, and the results show that our method significantly outperforms the state of the art.

6.
IEEE Trans Pattern Anal Mach Intell ; 40(2): 352-364, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28221992

RESUMO

In this paper, we study the challenging problem of categorizing videos according to high-level semantics such as the existence of a particular human action or a complex event. Although extensive efforts have been devoted in recent years, most existing works combined multiple video features using simple fusion strategies and neglected the utilization of inter-class semantic relationships. This paper proposes a novel unified framework that jointly exploits the feature relationships and the class relationships for improved categorization performance. Specifically, these two types of relationships are estimated and utilized by imposing regularizations in the learning process of a deep neural network (DNN). Through arming the DNN with better capability of harnessing both the feature and the class relationships, the proposed regularized DNN (rDNN) is more suitable for modeling video semantics. We show that rDNN produces better performance over several state-of-the-art approaches. Competitive results are reported on the well-known Hollywood2 and Columbia Consumer Video benchmarks. In addition, to stimulate future research on large scale video categorization, we collect and release a new benchmark dataset, called FCVID, which contains 91,223 Internet videos and 239 manually annotated categories.

7.
IEEE Trans Pattern Anal Mach Intell ; 37(11): 2304-16, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26440269

RESUMO

Many binary code embedding schemes have been actively studied recently, since they can provide efficient similarity search, and compact data representations suitable for handling large scale image databases. Existing binary code embedding techniques encode high-dimensional data by using hyperplane-based hashing functions. In this paper we propose a novel hypersphere-based hashing function, spherical hashing, to map more spatially coherent data points into a binary code compared to hyperplane-based hashing functions. We also propose a new binary code distance function, spherical Hamming distance, tailored for our hypersphere-based binary coding scheme, and design an efficient iterative optimization process to achieve both balanced partitioning for each hash function and independence between hashing functions. Furthermore, we generalize spherical hashing to support various similarity measures defined by kernel functions. Our extensive experiments show that our spherical hashing technique significantly outperforms state-of-the-art techniques based on hyperplanes across various benchmarks with sizes ranging from one to 75 million of GIST, BoW and VLAD descriptors. The performance gains are consistent and large, up to 100 percent improvements over the second best method among tested methods. These results confirm the unique merits of using hyperspheres to encode proximity regions in high-dimensional spaces. Finally, our method is intuitive and easy to implement.

8.
IEEE Trans Image Process ; 24(9): 2772-83, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25879948

RESUMO

Late fusion is one of the most effective approaches to enhance recognition accuracy through combining prediction scores of multiple classifiers, each of which is trained by a specific feature or model. The existing methods generally use a fixed fusion weight for one classifier over all samples, and ignore the fact that each classifier may perform better or worse for different subsets of samples. In order to address this issue, we propose a novel sample specific late fusion (SSLF) method. Specifically, we cast late fusion into an information propagation process that diffuses the fusion weights of labeled samples to the individual unlabeled samples, and enforce positive samples to have higher fusion scores than negative samples. Upon this process, the optimal fusion weight for each sample is identified, while positive samples are pushed toward the top at the fusion score rank list to achieve better accuracy. In this paper, two SSLF methods are presented. The first method is ranking SSLF (R-SSLF), which is based on graph Laplacian with RankSVM style constraints. We formulate and solve the problem with a fast gradient projection algorithm; the second method is infinite push SSLF (I-SSLF), which combines graph Laplacian with infinite push constraints. I-SSLF is a l∞ norm constrained optimization problem and can be solved by an efficient alternating direction method of multipliers method. Extensive experiments on both large-scale image and video data sets demonstrate the effectiveness of our methods. In addition, in order to make our method scalable to support large data sets, the AnchorGraph model is employed to propagate information on a subset of samples (anchor points) and then reconstruct the entire graph to get the weights of all samples. To the best of our knowledge, this is the first method that supports learning of sample specific fusion weights for late fusion.

9.
J Neural Eng ; 11(4): 046003, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24891496

RESUMO

OBJECTIVE: As we move through an environment, we are constantly making assessments, judgments and decisions about the things we encounter. Some are acted upon immediately, but many more become mental notes or fleeting impressions-our implicit 'labeling' of the world. In this paper, we use physiological correlates of this labeling to construct a hybrid brain-computer interface (hBCI) system for efficient navigation of a 3D environment. APPROACH: First, we record electroencephalographic (EEG), saccadic and pupillary data from subjects as they move through a small part of a 3D virtual city under free-viewing conditions. Using machine learning, we integrate the neural and ocular signals evoked by the objects they encounter to infer which ones are of subjective interest to them. These inferred labels are propagated through a large computer vision graph of objects in the city, using semi-supervised learning to identify other, unseen objects that are visually similar to the labeled ones. Finally, the system plots an efficient route to help the subjects visit the 'similar' objects it identifies. MAIN RESULTS: We show that by exploiting the subjects' implicit labeling to find objects of interest instead of exploring naively, the median search precision is increased from 25% to 97%, and the median subject need only travel 40% of the distance to see 84% of the objects of interest. We also find that the neural and ocular signals contribute in a complementary fashion to the classifiers' inference of subjects' implicit labeling. SIGNIFICANCE: In summary, we show that neural and ocular signals reflecting subjective assessment of objects in a 3D environment can be used to inform a graph-based learning model of that environment, resulting in an hBCI system that improves navigation and information delivery specific to the user's interests.


Assuntos
Interfaces Cérebro-Computador , Modelos Neurológicos , Algoritmos , Artefatos , Gráficos por Computador , Simulação por Computador , Eletroencefalografia , Eletroculografia , Meio Ambiente , Humanos , Orientação/fisiologia , Pupila/fisiologia , Movimentos Sacádicos/fisiologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-22754498

RESUMO

Neurons have complex axonal and dendritic morphologies that are the structural building blocks of neural circuits. The traditional method to capture these morphological structures using manual reconstructions is time-consuming and partly subjective, so it appears important to develop automatic or semi-automatic methods to reconstruct neurons. Here we introduce a fast algorithm for tracking neural morphologies in 3D with simultaneous detection of branching processes. The method is based on existing tracking procedures, adding the machine vision technique of multi-scaling. Starting from a seed point, our algorithm tracks axonal or dendritic arbors within a sphere of a variable radius, then moves the sphere center to the point on its surface with the shortest Dijkstra path, detects branching points on the surface of the sphere, scales it until branches are well separated and then continues tracking each branch. We evaluate the performance of our algorithm on preprocessed data stacks obtained by manual reconstructions of neural cells, corrupted with different levels of artificial noise, and unprocessed data sets, achieving 90% precision and 81% recall in branch detection. We also discuss limitations of our method, such as reconstructing highly overlapping neural processes, and suggest possible improvements. Multi-scaling techniques, well suited to detect branching structures, appear a promising strategy for automatic neuronal reconstructions.

11.
IEEE Trans Pattern Anal Mach Intell ; 34(12): 2393-406, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22331853

RESUMO

Hashing-based approximate nearest neighbor (ANN) search in huge databases has become popular due to its computational and memory efficiency. The popular hashing methods, e.g., Locality Sensitive Hashing and Spectral Hashing, construct hash functions based on random or principal projections. The resulting hashes are either not very accurate or are inefficient. Moreover, these methods are designed for a given metric similarity. On the contrary, semantic similarity is usually given in terms of pairwise labels of samples. There exist supervised hashing methods that can handle such semantic similarity, but they are prone to overfitting when labeled data are small or noisy. In this work, we propose a semi-supervised hashing (SSH) framework that minimizes empirical error over the labeled set and an information theoretic regularizer over both labeled and unlabeled sets. Based on this framework, we present three different semi-supervised hashing methods, including orthogonal hashing, nonorthogonal hashing, and sequential hashing. Particularly, the sequential hashing method generates robust codes in which each hash function is designed to correct the errors made by the previous ones. We further show that the sequential learning paradigm can be extended to unsupervised domains where no labeled pairs are available. Extensive experiments on four large datasets (up to 80 million samples) demonstrate the superior performance of the proposed SSH methods over state-of-the-art supervised and unsupervised hashing techniques.

12.
IEEE Trans Image Process ; 21(6): 3080-91, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22345543

RESUMO

Exploring context information for visual recognition has recently received significant research attention. This paper proposes a novel and highly efficient approach, which is named semantic diffusion, to utilize semantic context for large-scale image and video annotation. Starting from the initial annotation of a large number of semantic concepts (categories), obtained by either machine learning or manual tagging, the proposed approach refines the results using a graph diffusion technique, which recovers the consistency and smoothness of the annotations over a semantic graph. Different from the existing graph-based learning methods that model relations among data samples, the semantic graph captures context by treating the concepts as nodes and the concept affinities as the weights of edges. In particular, our approach is capable of simultaneously improving annotation accuracy and adapting the concept affinities to new test data. The adaptation provides a means to handle domain change between training and test data, which often occurs in practice. Extensive experiments are conducted to improve concept annotation results using Flickr images and TV program videos. Results show consistent and significant performance gain (10 +% on both image and video data sets). Source codes of the proposed algorithms are available online.

13.
J Neural Eng ; 8(3): 036025, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21562364

RESUMO

We describe a closed-loop brain-computer interface that re-ranks an image database by iterating between user generated 'interest' scores and computer vision generated visual similarity measures. The interest scores are based on decoding the electroencephalographic (EEG) correlates of target detection, attentional shifts and self-monitoring processes, which result from the user paying attention to target images interspersed in rapid serial visual presentation (RSVP) sequences. The highest scored images are passed to a semi-supervised computer vision system that reorganizes the image database accordingly, using a graph-based representation that captures visual similarity between images. The system can either query the user for more information, by adaptively resampling the database to create additional RSVP sequences, or it can converge to a 'done' state. The done state includes a final ranking of the image database and also a 'guess' of the user's chosen category of interest. We find that the closed-loop system's re-rankings can substantially expedite database searches for target image categories chosen by the subjects. Furthermore, better reorganizations are achieved than by relying on EEG interest rankings alone, or if the system were simply run in an open loop format without adaptive resampling.


Assuntos
Inteligência Artificial , Sistemas de Gerenciamento de Base de Dados , Bases de Dados Factuais , Interpretação de Imagem Assistida por Computador/métodos , Reconhecimento Automatizado de Padrão/métodos , Sistemas de Informação em Radiologia , Interface Usuário-Computador
14.
Artigo em Inglês | MEDLINE | ID: mdl-21096742

RESUMO

Our group has been investigating the development of BCI systems for improving information delivery to a user, specifically systems for triaging image content based on what captures a user's attention. One of the systems we have developed uses single-trial EEG scores as noisy labels for a computer vision image retrieval system. In this paper we investigate how the noisy nature of the EEG-derived labels affects the resulting accuracy of the computer vision system. Specifically, we consider how the precision of the EEG scores affects the resulting precision of images retrieved by a graph-based transductive learning model designed to propagate image class labels based on image feature similarity and sparse labels.


Assuntos
Eletroencefalografia , Processamento de Imagem Assistida por Computador/métodos , Armazenamento e Recuperação da Informação , Sistemas Homem-Máquina , Processamento de Sinais Assistido por Computador , Interface Usuário-Computador , Algoritmos , Bases de Dados Factuais , Humanos , Curva ROC , Reprodutibilidade dos Testes , Percepção Visual
15.
IEEE Trans Pattern Anal Mach Intell ; 31(10): 1913-20, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19696459

RESUMO

The success of bilinear subspace learning heavily depends on reducing correlations among features along rows and columns of the data matrices. In this work, we study the problem of rearranging elements within a matrix in order to maximize these correlations so that information redundancy in matrix data can be more extensively removed by existing bilinear subspace learning algorithms. An efficient iterative algorithm is proposed to tackle this essentially integer programming problem. In each step, the matrix structure is refined with a constrained Earth Mover's Distance procedure that incrementally rearranges matrices to become more similar to their low-rank approximations, which have high correlation among features along rows and columns. In addition, we present two extensions of the algorithm for conducting supervised bilinear subspace learning. Experiments in both unsupervised and supervised bilinear subspace learning demonstrate the effectiveness of our proposed algorithms in improving data compression performance and classification accuracy.


Assuntos
Algoritmos , Inteligência Artificial , Compressão de Dados/métodos , Face/fisiologia , Distribuição Normal
16.
Proteomics ; 9(8): 2286-94, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19337989

RESUMO

Conventional biomarker discovery focuses mostly on the identification of single markers and thus often has limited success in disease diagnosis and prognosis. This study proposes a method to identify an optimized protein biomarker panel based on MS studies for predicting the risk of major adverse cardiac events (MACE) in patients. Since the simplicity and concision requirement for the development of immunoassays can only tolerate the complexity of the prediction model with a very few selected discriminative biomarkers, established optimization methods, such as conventional genetic algorithm (GA), thus fails in the high-dimensional space. In this paper, we present a novel variant of GA that embeds the recursive local floating enhancement technique to discover a panel of protein biomarkers with far better prognostic value for prediction of MACE than existing methods, including the one approved recently by FDA (Food and Drug Administration). The new pragmatic method applies the constraints of MACE relevance and biomarker redundancy to shrink the local searching space in order to avoid heavy computation penalty resulted from the local floating optimization. The proposed method is compared with standard GA and other variable selection approaches based on the MACE prediction experiments. Two powerful classification techniques, partial least squares logistic regression (PLS-LR) and support vector machine classifier (SVMC), are deployed as the MACE predictors owing to their ability in dealing with small scale and binary response data. New preprocessing algorithms, such as low-level signal processing, duplicated spectra elimination, and outliner patient's samples removal, are also included in the proposed method. The experimental results show that an optimized panel of seven selected biomarkers can provide more than 77.1% MACE prediction accuracy using SVMC. The experimental results empirically demonstrate that the new GA algorithm with local floating enhancement (GA-LFE) can achieve the better MACE prediction performance comparing with the existing techniques. The method has been applied to SELDI/MALDI MS datasets to discover an optimized panel of protein biomarkers to distinguish disease from control.


Assuntos
Algoritmos , Biomarcadores/sangue , Doenças Cardiovasculares/diagnóstico , Diagnóstico por Computador/métodos , Idoso , Biomarcadores/química , Doenças Cardiovasculares/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Proteoma/química , Medição de Risco/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
17.
J Biomed Inform ; 42(1): 32-40, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18547870

RESUMO

With recent advances in fluorescence microscopy imaging techniques and methods of gene knock down by RNA interference (RNAi), genome-scale high-content screening (HCS) has emerged as a powerful approach to systematically identify all parts of complex biological processes. However, a critical barrier preventing fulfillment of the success is the lack of efficient and robust methods for automating RNAi image analysis and quantitative evaluation of the gene knock down effects on huge volume of HCS data. Facing such opportunities and challenges, we have started investigation of automatic methods towards the development of a fully automatic RNAi-HCS system. Particularly important are reliable approaches to cellular phenotype classification and image-based gene function estimation. We have developed a HCS analysis platform that consists of two main components: fluorescence image analysis and image scoring. For image analysis, we used a two-step enhanced watershed method to extract cellular boundaries from HCS images. Segmented cells were classified into several predefined phenotypes based on morphological and appearance features. Using statistical characteristics of the identified phenotypes as a quantitative description of the image, a score is generated that reflects gene function. Our scoring model integrates fuzzy gene class estimation and single regression models. The final functional score of an image was derived using the weighted combination of the inference from several support vector-based regression models. We validated our phenotype classification method and scoring system on our cellular phenotype and gene database with expert ground truth labeling. We built a database of high-content, 3-channel, fluorescence microscopy images of Drosophila Kc(167) cultured cells that were treated with RNAi to perturb gene function. The proposed informatics system for microscopy image analysis is tested on this database. Both of the two main components, automated phenotype classification and image scoring system, were evaluated. The robustness and efficiency of our system were validated in quantitatively predicting the biological relevance of genes.


Assuntos
Lógica Fuzzy , Genoma , Genômica/métodos , Processamento de Imagem Assistida por Computador/métodos , Modelos Genéticos , Interferência de RNA , Algoritmos , Animais , Células Cultivadas , Bases de Dados Genéticas , Drosophila/citologia , Drosophila/genética , Drosophila/metabolismo , Técnicas de Silenciamento de Genes , Armazenamento e Recuperação da Informação/métodos , Microscopia de Fluorescência , Reconhecimento Automatizado de Padrão , Fenótipo , Análise de Regressão , Reprodutibilidade dos Testes
18.
IEEE Trans Pattern Anal Mach Intell ; 30(11): 1985-97, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18787246

RESUMO

In this work, we systematically study the problem of event recognition in unconstrained news video sequences. We adopt the discriminative kernel-based method for which video clip similarity plays an important role. First, we represent a video clip as a bag of orderless descriptors extracted from all of the constituent frames and apply the earth mover's distance (EMD) to integrate similarities among frames from two clips. Observing that a video clip is usually comprised of multiple subclips corresponding to event evolution over time, we further build a multilevel temporal pyramid. At each pyramid level, we integrate the information from different subclips with Integer-value-constrained EMD to explicitly align the subclips. By fusing the information from the different pyramid levels, we develop Temporally Aligned Pyramid Matching (TAPM) for measuring video similarity. We conduct comprehensive experiments on the TRECVID 2005 corpus, which contains more than 6,800 clips. Our experiments demonstrate that 1) the TAPM multilevel method clearly outperforms single-level EMD (SLEMD) and 2) SLEMD outperforms keyframe and multiframe-based detection methods by a large margin. In addition, we conduct in-depth investigation of various aspects of the proposed techniques such as weight selection in SLEMD, sensitivity to temporal clustering, the effect of temporal alignment, and possible approaches for speed up. Extensive analysis of the results also reveals intuitive interpretation of video event recognition through video subclip alignment at different levels.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Armazenamento e Recuperação da Informação/métodos , Reconhecimento Automatizado de Padrão/métodos , Técnica de Subtração , Gravação em Vídeo/métodos , Inteligência Artificial , Aumento da Imagem/métodos
19.
J Biomol Screen ; 13(1): 29-39, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18227224

RESUMO

Genome-wide, cell-based screens using high-content screening (HCS) techniques and automated fluorescence microscopy generate thousands of high-content images that contain an enormous wealth of cell biological information. Such screens are key to the analysis of basic cell biological principles, such as control of cell cycle and cell morphology. However, these screens will ultimately only shed light on human disease mechanisms and potential cures if the analysis can keep up with the generation of data. A fundamental step toward automated analysis of high-content screening is to construct a robust platform for automatic cellular phenotype identification. The authors present a framework, consisting of microscopic image segmentation and analysis components, for automatic recognition of cellular phenotypes in the context of the Rho family of small GTPases. To implicate genes involved in Rac signaling, RNA interference (RNAi) was used to perturb gene functions, and the corresponding cellular phenotypes were analyzed for changes. The data used in the experiments are high-content, 3-channel, fluorescence microscopy images of Drosophila Kc167 cultured cells stained with markers that allow visualization of DNA, polymerized actin filaments, and the constitutively activated Rho protein Rac(V12). The performance of this approach was tested using a cellular database that contained more than 1000 samples of 3 predefined cellular phenotypes, and the generalization error was estimated using a cross-validation technique. Moreover, the authors applied this approach to analyze the whole high-content fluorescence images of Drosophila cells for further HCS-based gene function analysis.


Assuntos
Genômica/métodos , Interferência de RNA , Algoritmos , Animais , Linhagem Celular , Forma Celular , Citoesqueleto/enzimologia , Citoesqueleto/ultraestrutura , Drosophila/citologia , Drosophila/enzimologia , Drosophila/genética , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Genômica/estatística & dados numéricos , Microscopia de Fluorescência , Fenótipo , Transdução de Sinais/genética , Proteínas rac de Ligação ao GTP/antagonistas & inibidores , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...