Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 21(9): 4763-4767, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33691863

RESUMO

Transparent conductive oxide (TCO) semiconductors are attracted considerable attention due to a wide range of applications, such as flat panel display (FPD), touch panels, solar cells, and other optoelectronic devices. Owing to the different carrier conduction paths between n-type and P-type TCOs, the n-type TCO used in TFTs usually have high Ion/Ioff current ratio (>107) and high electron mobility (>10 cm²/V·s), P-type TCO TFTs are both lower than that of n-type one. For complementary circuits design and applications, however, both P-type and n-type semiconductor materials are equally important. For SnO thin films, it is important to adjust the ratio of Sn2+ (SnO P-type) and Sn4+ (SnO2 n-type) in order to modulate the electrical characteristics. In this investigation of post treatment for SnO thin films, both microwave annealing (MWA) and furnace annealing process with 02 ambient are studied. The results show that SnO thin films are optimized at 300 °C, 30 minutes furnace annealing, the P-type SnO/SnO2 thin film shows surface mean roughness 0.168 nm, [Sn2+]/[Sn4+] ratio as 0.838, at least 80% transmittance between 380 nm-700 nm visible light. Withthe results, SnO can be even used to fabricate high performance P-type thin film transistors (TFTs) device for future applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...