Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(9)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38445839

RESUMO

A method for characterizing the topological fluctuations in liquids is proposed. This approach exploits the concept of the weighted gyration tensor of a collection of particles and permits the definition of a local configurational unit (LCU). The first principal axis of the gyration tensor serves as the director of the LCU, which can be tracked and analyzed by molecular dynamics simulations. Analysis of moderately supercooled Kob-Andersen mixtures suggests that orientational relaxation of the LCU closely follows viscoelastic relaxation and exhibits a two-stage behavior. The slow relaxing component of the LCU corresponds to the structural, Maxwellian mechanical relaxation. Additionally, it is found that the mean curvature of the LCUs is approximately zero at the Maxwell relaxation time with the Gaussian curvature being negative. This observation implies that structural relaxation occurs when the configurationally stable and destabilized regions interpenetrate each other in a bicontinuous manner. Finally, the mean and Gaussian curvatures of the LCUs can serve as reduced variables for the shear stress correlation, providing a compelling proof of the close connection between viscoelastic relaxation and topological fluctuations in glass-forming liquids.

2.
ACS Omega ; 8(42): 39699-39708, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37901487

RESUMO

In this study, we investigated the thermal stabilities of butylphosphonic acid (BPA) and aminopropyltriethoxysilane (APTES) self-assembled monolayers (SAM) on a Si substrate. The thermal desorption and the thermal cleavage of the BPA and APTES SAM film on the Si substrate were studied by X-ray photoelectron spectroscopy (XPS) upon thermal treatment from 50 to 550 °C. XPS analyses show that the onset of the thermal desorption of the APTES monolayer occurs at 250 °C and the APTES SAM completely decomposed at 400 °C. Conversely, BPA SAM on Si shows that the onset of thermal desorption occurs at 350 °C, and the BPA SAM completely desorbed at approximately 500 °C. Our study revealed that the organophosphonate SAM is a more stable SAM in modifying the dielectric sidewalls of a Cu interconnect when compared to organosilane SAM. To overcome the spontaneous reaction of the organophosphonate film on the metal substrate, a simple orthogonal functionalization method using thiolate SAM as a sacrificial layer was also demonstrated in this study.

3.
ACS Appl Mater Interfaces ; 15(41): 48543-48550, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37792701

RESUMO

This study presents the utilization of MoS2 as a diffusion barrier for metal interconnects, in situ transmission electron microscopy (TEM) observations are employed for comprehensive understanding. The diffusion-blocking ability of MoS2 is discussed by the diffusion and phase transformation between Ru and Si via TEM diffraction and imaging. When the sample is heated to a high temperature such that MoS2 loses the ability to block the diffusion, Si diffuses through the MoS2 into the Ru layer, leading to the formation of Ru2Si3. Both multilayer and monolayer (1L) MoS2 exhibit exceptional diffusion-blocking ability up to 800 °C. Furthermore, plasma-treated 1L-MoS2 shows a slightly low diffusion-blocking temperature of 750 °C, while the dangling bonds in MoS2 improve the interfacial adhesion. These findings suggest that MoS2 holds great potential as a diffusion barrier for metal interconnects.

4.
Nanomaterials (Basel) ; 13(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36616100

RESUMO

The nanoscopic deformation of ⟨111⟩ nanotwinned copper nanopillars under strain rates between 10-5/s and 5 × 10-4/s was studied by using in situ transmission electron microscopy. The correlation among dislocation activity, twin boundary instability due to incoherent twin boundary migration and corresponding mechanical responses was investigated. Dislocations piled up in the nanotwinned copper, giving rise to significant hardening at relatively high strain rates of 3-5 × 10-4/s. Lower strain rates resulted in detwinning and reduced hardening, while corresponding deformation mechanisms are proposed based on experimental results. At low/ultralow strain rates below 6 × 10-5/s, dislocation activity almost ceased operating, but the migration of twin boundaries via the 1/4 ⟨101¯ ⟩ kink-like motion of atoms is suggested as the detwinning mechanism. At medium strain rates of 1-2 × 10-4/s, detwinning was decelerated likely due to the interfered kink-like motion of atoms by activated partial dislocations, while dislocation climb may alternatively dominate detwinning. These results indicate that, even for the same nanoscale twin boundary spacing, different nanomechanical deformation mechanisms can operate at different strain rates.

5.
Materials (Basel) ; 15(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36234008

RESUMO

To develop strong refractory high-entropy alloys for use at elevated temperatures as well as to overcome grain-boundary brittleness, an equimolar HfMoNbTaTiZr alloy was prepared, and a minor amount of boron (0.1 at.%) was added into the alloy. The microstructures of the alloys were characterized, and their macro-to-microscale mechanical properties were measured. The microstructural observations indicated that the matrices of both the alloys were composed of a body-centered cubic solid-solution structure, and the added boron induced the precipitation of hexagonal close-packed borides (most likely the (Hf, Zr)B2) at the grain boundaries. The modulus and hardness of differently oriented grains were about equivalent, suggesting a diminished anisotropy, and many small slips occurred on multiple {110} planes. While the hardness of the matrix was not increased, the intergranular precipitation of the borides markedly raised the hardness of the grain boundaries. Owing to the enhanced grain boundary cohesion, the work hardenability and ductility were effectively improved with the addition of boron.

6.
Materials (Basel) ; 15(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36234385

RESUMO

The authors would like to make corrections to a recently published paper [...].

7.
ACS Nano ; 16(11): 18298-18306, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36264050

RESUMO

Inspired by Mantis shrimp, this work aims to suggest a bottom-up approach for the fabrication of nanonetwork hydroxyapatite (HAp) thin film using self-assembled polystyrene-block-polydimethylsiloxane (PS-b-PDMS) block copolymer (BCP) with a diamond nanostructure as a template for templated sol-gel reaction. By introducing poly(vinylpyrrolidone) (PVP) into precursors of calcium nitrate tetrahydrate and triethyl phosphite, which limits the growth of forming HAp nanoparticles, well-ordered nanonetwork HAp thin film can be fabricated. Based on nanoindentation results, the well-ordered nanonetwork HAp shows high energy dissipation compared to the intrinsic HAp. Moreover, the uniaxial microcompression test for the nanonetwork HAp shows high energy absorption per volume and high compression strength, outperforming many cellular materials due to the topologic effect of the well-ordered network at the nanoscale. This work highlights the potential of exploiting BCP templated synthesis to fabricate ionic solid materials with a well-ordered nanonetwork monolith, giving rise to the brittle-to-ductile transition, and thus appealing mechanical properties with the character of mechanical metamaterials.


Assuntos
Nanopartículas , Nanoestruturas , Durapatita/química , Polímeros/química , Nanoestruturas/química , Poliestirenos/química
8.
Materials (Basel) ; 15(18)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36143635

RESUMO

Most medium entropy alloys (MEAs) exhibit excellent mechanical properties, but their applications are limited because of their high density. This study explores a series of lightweight nonequiatomic Ti65(AlCrNbV)35-xZrx (x = 3, 5, 7, and 10) MEAs with a low density, high strength, and high ductility. To achieve solid solution strengthening, Zr with a large atomic radius was used. In addition, various thermomechanical treatment parameters were adopted to further improve the MEAs' mechanical properties. The density of the MEAs was revealed to be approximately 5 g/cm3, indicating that they were lightweight. Through an X-ray diffraction analysis, the MEAs were revealed to have a single body-centered cubic structure not only in the as-cast state but also after thermomechanical treatment. In terms of mechanical properties, all the as-cast MEAs with Zr additions achieved excellent performance (>1000 MPa tensile yield strength and 20% tensile ductility). In addition, hot rolling effectively eliminated the defects of the MEAs; under a given yield strength, hot-rolled MEAs exhibited superior ductility relative to non-hot-rolled MEAs. Overall, the Ti65(AlCrNbV)28Zr7 MEAs exhibited an optimum combination of mechanical properties (yield strength > 1200 MPa, plastic strain > 15%) after undergoing hot rolling 50%, cold rolling 70%, and rapid annealing for 30 to 50 s (at a temperature of approximately 850 °C) with a heating rate of 15 K/s. With their extremely high specific yield strength (264 MPa·g/cm3) and high ductility (22%), the Ti65(AlCrNbV)28Zr7 MEAs demonstrate considerable potential for energy and transportation applications.

9.
Polymers (Basel) ; 14(9)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35567059

RESUMO

Herein, this work aims to fabricate well-ordered nanonetwork epoxy resin modified with poly(butyl acrylate)-b-poly(methyl methacrylate) (PBA-b-PMMA) block copolymer (BCP) for enhanced energy dissipation using a self-assembled diblock copolymer of polystyrene-b-poly(dimethylsiloxane) (PS-b-PDMS) with gyroid and diamond structures as templates. A systematic study of mechanical properties using nanoindentation of epoxy resin with gyroid- and diamond-structures after modification revealed significant enhancement in energy dissipation, with the values of 0.36 ± 0.02 nJ (gyroid) and 0.43 ± 0.03 nJ (diamond), respectively, when compared to intrinsic epoxy resin (approximately 0.02 ± 0.002 nJ) with brittle characteristics. This enhanced property is attributed to the synergic effect of the deliberate structure with well-ordered nanonetwork texture and the toughening of BCP-based modifiers at the molecular level. In addition to the deliberate structural effect from the nanonetwork texture, the BCP modifier composed of epoxy-philic hard segment and epoxy-phobic soft segment led to dispersed soft-segment domains in the nanonetwork-structured epoxy matrix with superior interfacial strength for the enhancement of applied energy dissipation.

10.
Materials (Basel) ; 15(10)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35629667

RESUMO

To lower the charge leakage of a floating gate device and improve the operation performance of memory devices toward a smaller structure size and a higher component capability, two new types of floating gates composed of pn-type polysilicon or np-type polysilicon were developed in this study. Their microstructure and elemental compositions were investigated, and the sheet resistance, threshold voltages and erasing voltages were measured. The experimental results and charge simulation indicated that, by forming an n-p junction in the floating gate, the sheet resistance was increased, and the charge leakage was reduced because of the formation of a carrier depletion zone at the junction interface serving as an intrinsic potential barrier. Additionally, the threshold voltage and erasing voltage of the np-type floating gate were elevated, suggesting that the performance of the floating gate in the operation of memory devices can be effectively improved without the application of new materials or changes to the physical structure.

11.
J Chem Phys ; 156(13): 131101, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35395880

RESUMO

We outline a machine learning strategy for quantitively determining the conformation of AB-type diblock copolymers with excluded volume effects using small angle scattering. Complemented by computer simulations, a correlation matrix connecting conformations of different copolymers according to their scattering features is established on the mathematical framework of a Gaussian process, a multivariate extension of the familiar univariate Gaussian distribution. We show that the relevant conformational characteristics of copolymers can be probabilistically inferred from their coherent scattering cross sections without any restriction imposed by model assumptions. This work not only facilitates the quantitative structural analysis of copolymer solutions but also provides the reliable benchmarking for the related theoretical development of scattering functions.

12.
Nanotechnology ; 33(15)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-34965523

RESUMO

Cu with nanotwin (NT) possesses great electrical, mechanical, and thermal properties and has potential for electronic applications. Various studies have reported the effect of NT orientation on Cu mechanical properties. However, its effect on Cu stress-relaxation behavior has not been clarified, particularly in nano-scale. In this study, Cu nanopillars with various orientations were examined by a picoindenter under constant strain and observed byin situTEM. The angles between the twin plane and the loading direction in the examined nanopillars were 0°, 60°, to 90°, and a benchmark pillar of single-crystal Cu without NT was examined. The stress drops were respectively 10%, 80%, 4%, and 50%. Owing to the interaction by NT, the dislocation behavior in nanopillars was different from that in bulk or in thin film samples. Especially, the rapid slip path of dislocations to go to the free surface of the nanopillar induced a dislocation-free zone in the 0° nanopillar, which led to work-softening. On the contrary, a high dislocation density was observed in the 90° nanopillar, which was generated by dislocation interaction and obstruction of dislocation slip by twin planes, and it led to work-hardening. The findings reveal the NT orientation in Cu nanopillars affected stress relaxation significantly.

13.
Tzu Chi Med J ; 33(3): 288-293, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34386368

RESUMO

OBJECTIVE: This study aimed to evaluate whether adjuvant radiotherapy (RT) can improve the treatment outcome of patients with locally advanced gastric cancer who underwent extensive lymph node dissection (ELND). MATERIALS AND METHODS: This retrospective study included patients with gastric cancer pathological stages IIA-IIIC at Taipei Tzu Chi Hospital between 2008 and 2015. Patients (a) aged >80 years, (b) with distant metastasis at diagnosis, (c) with coexisting malignancies, (d) who did not complete the prescribed RT course, and (e) who died 1 month after surgery were excluded. Among 420 patients diagnosed with gastric cancer, 98 were included. RESULTS: The median follow-up was 24.5 months. Of 39 patients who underwent adjuvant RT, 38 also received adjuvant chemotherapy (CT). Of 59 patients who did not receive adjuvant RT, only 34 received adjuvant CT. ELND was performed in 67.3% of the patients. The 5-year overall survival (OS) rate was 40%. In the univariate analyses, adjuvant CT regimen, 5-fluorouracil + leucovorin, was associated with worst outcome, while TS-1 was associated with better survival outcome (P = 0.018). The number of involved lymph nodes was strongly related to the OS and disease-free survival (DFS) (P < 0.001). We tried using different numbers of involved lymph nodes as a cutoff point and found that adjuvant RT significantly improved both OS and DFS in patients whose involved lymph nodes were ≥4 (OS, P = 0.017; DFS, P = 0.015). In multivariate analyses, better DFS was associated with negative surgical margin (P = 0.04), earlier disease stage (P = 0.001), adjuvant radiotherapy (P = 0.045), and adjuvant CT regimen TS-1 (P = 0.001). CONCLUSION: Adjuvant RT could improve DFS of patients with locally advanced gastric cancer with or without ELND. When the number of involved lymph nodes is ≥4, adjuvant RT is strongly suggested.

14.
Nano Lett ; 21(8): 3355-3363, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33856816

RESUMO

Herein, we aim to develop a facile method for the fabrication of mechanical metamaterials from templated polymerization of thermosets including phenolic and epoxy resins using self-assembled block copolymer, polystyrene-polydimethylsiloxane with tripod network (gyroid), and tetrapod network (diamond) structures, as templates. Nanoindentation studies on the nanonetwork thermosets fabricated reveal enhanced energy dissipation from intrinsic brittle thermosets due to the deliberate structuring; the calculated energy dissipation for gyroid phenolic resins is 0.23 nJ whereas the one with diamond structure gives a value of 0.33 nJ. Consistently, the gyroid-structured epoxy gives a high energy dissipation value of 0.57 nJ, and the one with diamond structure could reach 0.78 nJ. These enhanced properties are attributed to the isotropic periodicity of the nanonetwork texture with plastic deformation, and the higher number of struts in the tetrapod diamond network in contrast to tripod gyroid, as confirmed by the finite element analysis.

15.
Small ; 17(17): e2007171, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33711202

RESUMO

Band structure by design in 2D layered semiconductors is highly desirable, with the goal to acquire the electronic properties of interest through the engineering of chemical composition, structure, defect, stacking, or doping. For atomically thin transition metal dichalcogenides, substitutional doping with more than one single type of transition metals is the task for which no feasible approach is proposed. Here, the growth of WS2 monolayer is shown codoped with multiple kinds of transition metal impurities via chemical vapor deposition controlled in a diffusion-limited mode. Multielement embedment of Cr, Fe, Nb, and Mo into the host lattice is exemplified. Abundant impurity states thus generate in the bandgap of the resultant WS2 and provide a robust switch of charging/discharging states upon sweep of an electric filed. A profound memory window exists in the transfer curves of doped WS2 field-effect transistors, forming the basis of binary states for robust nonvolatile memory. The doping technique presented in this work brings one step closer to the rational design of 2D semiconductors with desired electronic properties.

16.
J Chem Phys ; 153(18): 184902, 2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33187411

RESUMO

Self-assembly of amphiphilic polymers in water is of fundamental and practical importance. Significant amounts of free unimers and associated micellar aggregates often coexist over a wide range of phase regions. The thermodynamic and kinetic properties of the microphase separation are closely related to the relative population density of unimers and micelles. Although the scattering technique has been employed to identify the structure of micellar aggregates as well as their time-evolution, the determination of the population ratio of micelles to unimers remains a challenging problem due to their difference in scattering power. Here, using small-angle neutron scattering (SANS), we present a comprehensive structural study of amphiphilic n-dodecyl-PNIPAm polymers, which shows a bimodal size distribution in water. By adjusting the deuterium/hydrogen ratio of water, the intra-micellar polymer and water distributions are obtained from the SANS spectra. The micellar size and number density are further determined, and the population densities of micelles and unimers are calculated to quantitatively address the degree of micellization at different temperatures. Our method can be used to provide an in-depth insight into the solution properties of microphase separation, which are present in many amphiphilic systems.

17.
Nanomaterials (Basel) ; 10(10)2020 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-32993122

RESUMO

We demonstrate the fabrication of free-standing inverse opals with gradient pores via a combination of electrophoresis and electroplating techniques. Our processing scheme starts with the preparation of multilayer colloidal crystals by conducting sequential electrophoresis with polystyrene (PS) microspheres in different sizes (300, 600, and 1000 nm). The critical factors affecting the stacking of individual colloidal crystals are discussed and relevant electrophoresis parameters are identified so the larger PS microspheres are assembled successively atop of smaller ones in an orderly manner. In total, we construct multilayer colloidal crystals with vertical stacking of microspheres in 300/600, 300/1000, and 300/600/1000 nm sequences. The inverse opals with gradient pores are produced by galvanostatic plating of Ni, followed by the selective removal of colloidal template. Images from scanning electron microscopy exhibit ideal multilayer close-packed structures with well-defined boundaries among different layers. Results from porometer analysis reveal the size of bottlenecks consistent with those of interconnected pore channels from inverse opals of smallest PS microspheres. Mechanical properties determined by nanoindentation tests indicate significant improvements for multilayer inverse opals as compared to those of conventional single-layer inverse opals.

18.
J Phys Chem Lett ; 11(17): 7334-7341, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32813537

RESUMO

The influence of lithium chloride (LiCl) on the hydration structure of anionic micelles of sodium dodecyl sulfate (SDS) in water was studied using the contrast-variation small-angle neutron scattering (SANS) technique. In the past, extensive computational studies have shown that the distribution of invasive water plays a critical role in the self-organization of SDS molecules and the stability of the assemblies. However, in past scattering studies the degree of the hydration level was not examined explicitly. Here, a series of contrast-variation SANS data was analyzed to extract the intramicellar radial distributions of invasive water and SDS molecules from the evolving spectral lineshapes caused by the varying isotopic ratios of water. By addressing the intramicellar inhomogeneous distributions of water and SDS molecules, a detailed description of how the counterion association influences the micellization behavior of SDS molecules is provided. The extension of our method can be used to provide an in-depth insight into the micellization phenomenon, which is commonly found in many soft matter systems.

19.
Nano Lett ; 18(8): 4993-5000, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-29985625

RESUMO

We observed the small-size-induced hardening and plasticity of brittle ionic MgO as a result of abnormally triggered dislocation gliding on a non-charge-balanced slip system. The indentation tests of ⟨111⟩ MgO pillars revealed an increased hardness with decreasing pillar size, and the tips of the pillars that were ≤200 nm were plastically deformed. The in situ compression tests of ⟨111⟩ MgO nanopillars in transmission electron microscopy verified aligned dislocation-mediated plasticity on the {111}⟨110⟩ and {100}⟨110⟩ systems rather than the charge-balanced {110}⟨110⟩ slip system.

20.
Sci Rep ; 7(1): 9727, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28852077

RESUMO

This study reports a mechanical stress-based technique that involves scratching or imprinting to write textured graphite conducting wires/patterns in an insulating amorphous carbon matrix for potential use as interconnects in future carbonaceous circuits. With low-energy post-annealing below the temperature that is required for the thermal graphitization of amorphous carbon, the amorphous carbon phase only in the mechanically stressed regions transforms into a well aligned crystalline graphite structure with a low electrical resistivity of 420 µΩ-cm, while the surrounding amorphous carbon matrix remains insulating. Micro-Raman spectra with obvious graphitic peaks and high-resolution transmission electron microscopic observations of clear graphitic lattice verified the localized phase transformation of amorphous carbon into textured graphite exactly in the stressed regions. The stress-induced reconstruction of carbon bonds to generate oriented graphitic nuclei is believed to assist in the pseudo-self-formation of textured graphite during low-temperature post annealing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...