Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Environ Res ; 243: 117752, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38008202

RESUMO

Plant leaf litter has a major role in the structure and function of soil ecosystems as it is associated with nutrient release and cycling. The present study is aimed to understand how well the decomposing leaf litter kept soil organic carbon and nitrogen levels stable during an incubation experiment that was carried out in a lab setting under controlled conditions and the results were compared to those from a natural plantation. In natural site soil samples, Anacardium. occidentale showed a higher value of organic carbon at surface (1.14%) and subsurface (0.93%) and Azadirachta. indica exhibited a higher value of total nitrogen at surface (0.28%) and subsurface sample (0.14%). In the incubation experiment, Acacia auriculiformis had the highest organic carbon content initially (5.26%), whereas A. occidentale had the highest nitrogen level on 30th day (0.67%). The overall carbon-nitrogen ratio showed a varied tendency, which may be due to dynamic changes in the complex decomposition cycle. The higher rate of mass loss and decay was observed in A. indica leaf litter, the range of the decay constant is 1.26-2.22. The morphological and chemical changes of soil sample and the vermicast were substantained using scanning electron microscopy (SEM) and Fourier transmission infrared spectroscopy (FT-IR).


Assuntos
Azadirachta , Solo , Solo/química , Árvores , Ecossistema , Carbono/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Nitrogênio/análise , Folhas de Planta
2.
Mol Biotechnol ; 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907811

RESUMO

The present study focused on preparing and characterizing magnetite-polyvinyl alcohol (PVA) hybrid nanoparticles using Acanthophora spicifera marine algae extract as a reducing agent. Various analytical techniques, including UV-Visible spectrometry, Fourier-transform infrared (FTIR) analysis, energy-dispersive X-ray (EDX), scanning electron microscopy (SEM), and X-ray diffraction (XRD) analysis, were used to characterize the nanoparticles. The results showed the successful synthesis of nanoparticles with a characteristic color change and absorption peak at 400 nm in UV-Visible spectrometry. FTIR analysis indicated an interaction between the carboxyl group and magnetite-polyvinyl alcohol hybrid ions. SEM analysis revealed spherical nanoparticles with sizes ranging from 20 to 100 nm. EDX analysis confirmed the presence of strong magnetite peaks in Acanthophora spicifera, validating successful preparation. XRD analysis indicated the crystalline nature of the nanoparticles. Furthermore, the antimicrobial potential of As-PVA-MNPs was evaluated, demonstrating a significant zone of inhibition against tested bacterial and fungal samples at a concentration of 100 µg. These findings suggest the promising antimicrobial activity of the synthesized nanoparticles for potential applications in combating pathogenic microorganisms.

3.
Chemosphere ; 341: 139822, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37598950

RESUMO

The dehydration of ethanol into diethyl ether over a SO4/SiO2 catalyst was investigated. The SO4/SiO2 catalysts were prepared by the sulfation method using 1, 2, and 3 M of sulfuric acid (SS1, SS2, and SS3) via hydrothermal treatment. This study is focused on the synthesis of a SO4/SiO2 catalyst with high total acidity that can be subsequently utilized to convert ethanol into diethyl ether. The total acidity test revealed that the sulfation process increased the total acidity of SiO2. The SS2 catalyst (with 2 M sulfuric acid) displayed the highest total acidity of 7.77 mmol/g, whereas the SiO2 total acidity was only 0.11 mmol/g. Meanwhile, the SS3 catalyst (with 3 M sulfuric acid) has a lower total acidity of 7.09 mmol/g due to the distribution of sulfate groups on the surface having reached its optimum condition. The crystallinity and structure of the SS2 catalyst were not affected by the hydrothermal treatment or the sulfate process on silica. Furthermore, The SS2 catalyst characteristics in the presence of sulfate lead to a flaky surface in the morphology and non-uniform particle size. In addition, the surface area and pore volume of the SS2 catalyst decreased (482.56-172.26 m2/g) and (0.297-0.253 cc/g), respectively, because of the presence of sulfate on the silica surface. The SS2 catalyst's pore shape information explains the formation of non-uniform pore sizes and shapes. Finally, the activity and selectivity of SO4/SiO2 catalysts in the conversion of ethanol to diethyl ether yielded the highest ethanol conversion of 70.01% and diethyl ether product of 9.05% from the SS2 catalyst (the catalyst with the highest total acidity). Variations in temperature reaction conditions (175-225 °C) show an optimum reaction temperature to produce diethyl ether at 200 °C (11.36%).


Assuntos
Éter , Dióxido de Silício , Humanos , Dióxido de Silício/química , Éter/química , Desidratação , Sulfatos , Etanol/química
4.
Environ Res ; 236(Pt 2): 116810, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37532209

RESUMO

Gestagens are common pollutants accumulated in the aquatic ecosystem. Gestagens are comprised of natural gestagens (i.e. progesterone) and synthetic gestagens (i.e. progestins). The major contributors of gestagens in the environment are paper plant mill effluent, wastewater treatment plants, discharge from pharmaceutical manufacturing, and livestock farming. Gestagens present in the aquatic environment interact with progesterone receptors and other steroid hormone receptors, negatively influencing fish reproduction, development, and behavior. In fish, the gonadotropin induces 17α, 20ß-dihydroxy-4-pregnen-3-one (DHP) production, an important steroid hormone involved in gametogenesis. DHP interacts with the membrane progestin receptor (mPR), which regulates sperm motility and oocyte maturation. Gestagens also interfere with the hypothalamic-pituitary-gonadal (HPG) axis, which results in altered hormone levels in fish. Moreover, recent studies showed that even at low concentrations exposure to gestagens can have detrimental effects on fish reproduction, including reduced egg production, masculinization, feminization in males, and altered sex ratio, raising concerns about their impact on the fish population. This review highlights the hormonal regulation of sperm motility, oocyte maturation, the concentration of environmental gestagens in the aquatic environment, and their detrimental effects on fish reproduction. However, the long-term and combined impacts of multiple gestagens, including their interactions with other pollutants on fish populations and ecosystems are not well understood. The lack of standardized regulations and monitoring protocols for gestagens pollution in wastewater effluent hampers effective control and management. Nonetheless, advancements in analytical techniques and biomonitoring methods provide potential solutions by enabling better detection and quantification of gestagens in aquatic ecosystems.


Assuntos
Poluentes Ambientais , Progestinas , Animais , Masculino , Progestinas/farmacologia , Águas Residuárias/toxicidade , Ecossistema , Motilidade dos Espermatozoides , Peixes , Reprodução , Receptores de Progesterona , Esteroides/farmacologia
5.
Bioresour Technol ; 387: 129660, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37573978

RESUMO

This review article critically evaluates the significance of adopting advanced biofuel production techniques that employ lignocellulosic materials, waste biomass, and cutting-edge technology, to achieve sustainable environmental stewardship. Through the analysis of conducted research and development initiatives, the study highlights the potential of these techniques in addressing the challenges of feedstock supply and environmental impact and implementation policies that have historically plagued the conventional biofuel industry. The integration of state-of-the-art technologies, such as nanotechnology, pre-treatments and enzymatic processes, has shown considerable promise in enhancing the productivity, quality, and environmental performance of biofuel production. These developments have improved conversion methods, feedstock efficiency, and reduced environmental impacts. They aid in creating a greener and sustainable future by encouraging the adoption of sustainable feedstocks, mitigating greenhouse gas emissions, and accelerating the shift to cleaner energy sources. To realize the full potential of these techniques, continued collaboration between academia, industry representatives, and policymakers remains essential.


Assuntos
Biocombustíveis , Conservação dos Recursos Naturais , Biotecnologia/métodos , Biomassa , Políticas
6.
Environ Res ; 235: 116611, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37437863

RESUMO

The current study aims to investigate the influence of seasonal changes on the pollution loads of the sediment of a coastal area in terms of its physicochemical features. The research will focus on analyzing the nutrients, organic carbon and particle size of the sediment samples collected from 12 different sampling stations in 3 different seasons along the coastal area. Additionally, the study discusses about the impact of anthropogenic activities such as agriculture and urbanization and natural activities such as monsoon on the sediment quality of the coastal area. The nutrient changes in the sediment were found to be: pH (7.96-9.45), EC (2.89-5.23 dS/m), nitrogen (23.98-57.23 mg/kg), phosphorus (7.75-11.36 mg/kg), potassium (217-398 mg/kg), overall organic carbon (0.35-0.99%), and sediment proportions (8.91-9.3%). Several statistical methods were used to investigate changes in sediment quality. According to the three-way ANOVA test, the mean value of the sediments differs significantly with each season. It correlates significantly with principal factor analysis and cluster analysis across seasons, implying contamination from both natural and man-made sources. This study will contribute to developing effective management strategies for the protection and restoration of degraded coastal ecosystem.


Assuntos
Sedimentos Geológicos , Poluentes Químicos da Água , Humanos , Sedimentos Geológicos/análise , Estações do Ano , Ecossistema , Monitoramento Ambiental/métodos , Baías , Carbono/análise , Poluentes Químicos da Água/análise
7.
Chemosphere ; 337: 139224, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37336442

RESUMO

This work provides a first-time comparative study examining the photocatalytic activity of functionalized TiO2-based composites to eliminate naphthol blue in Batik wastewater. Reduced graphene oxide (RGO) was synthesized by oxidizing solid graphite using the Hummers' method followed by sonication and reduction. N-doped TiO2 (N-TiO2) was synthesized from titanium tetrachloride (TiCl4) and urea (CH4N2O) precursors by the sol-gel method. N-TiO2 modified RGO (RGO/NT) was synthesized using a hydrothermal method from N-TiO2 and RGO. Prepared TiO2-based composites and commercial TiO2, for comparison were characterized using Fourier transform infrared spectrometer (FTIR), X-Ray diffractometer (XRD), scanning electron microscope-energy dispersive X-ray (SEM-EDX), and UV-Vis diffuse reflectance spectrometer (UV-Vis DRS). FTIR characterization indicated Ti-N bonding in N-TiO2 and RGO/NT. XRD patterns showed that commercial TiO2 had a rutile phase, while N-TiO2 and RGO/NT had an anatase phase with crystal sizes of 30.09, 16.28, and 12.02 nm, respectively. SEM results displayed the presence of small and glossy white N-TiO2 dispersed on the surface of RGO. Characterization using UV-Vis DRS showed that the band gap energy values for TiO2, N-TiO2, and RGO/NT were 3.25, 3.12, and 3.08 eV with absorption regions at the wavelengths of 382, 398, and 403 nm, respectively. The highest photocatalytic activity for RGO/NT for degrading naphthol blue was obtained at pH 5, with a photocatalyst mass of 60 mg, and an irradiation of 15 min. Photocatalytic degradation by RGO/NT on Batik wastewater under visible light showed higher effectivity than under UV light.


Assuntos
Óxidos , Águas Residuárias , Óxidos/química , Naftóis , Titânio/química , Luz , Catálise
8.
Chemosphere ; 332: 138882, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37164194

RESUMO

Methylene blue (MB) and hexavalent chromium(Cr(VI)) are hazardous pollutants in textile waste and cannot be completely removed using conventional methods. So far, there have been no specific studies examining the synthesis and activity of N-TiO2/rGO as a photocatalyst for removing MB and Cr(VI) from textile wastewater. This work especially highlights the synthesis of N-TiO2/rGO as a photocatalyst which exhibits a wider range of light absorption and is highly effective for simultaneous removal of MB-Cr(VI) under visible light. Titanium tetrachloride (TiCl4) was used as the precursor for N-TiO2 synthesis using the sol-gel method. Graphite was oxidized using Hummer's method and reduced with hydrazine to produce rGO. N-TiO2/rGO was synthesized using a hydrothermal process and then analyzed using several characterization instruments. The X-ray diffraction pattern (XRD) showed that the anatase N-TiO2/rGO phase was detected at the diffraction peak of 2θ = 25.61. Scanning electron microscopy and transmission electron microscopy (SEM-EDS and TEM) dispersive X-ray spectrometry images show that N-TiO2 particles adhere to the surface of rGO with uniform size and N and Ti elements are present in the N-TiO2/rGO combined investigated. Gas absorption analysis data (GSA) shows that N-TiO2/rGO had a surface area of 77.449 m2/g, a pore volume of 0.335 cc/g, and a pore size of 8.655 nm. The thermogravimetric differential thermal analysis (TG-DTA) curve showed the anatase phase at 500-780 °C with a weight loss of 0.85%. The N-TiO2/rGO composite showed a good photocatalyst application. The photocatalytic activity of N-TiO2/rGO for textile wastewater treatment under visible light showed higher effectiveness than ultraviolet light, with 97.92% for MB and 97.48% for Cr(VI). Combining N-TiO2 with rGO is proven to increase the light coverage in the visible light region. Removal of MB and Cr(VI) can be carried out simultaneously and results in a removal efficiency of 95.96%.


Assuntos
Grafite , Grafite/química , Águas Residuárias , Óxidos/química , Titânio/química , Cromo/química , Catálise
9.
Chemosphere ; 335: 138931, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37245596

RESUMO

The current study evaluated the effectiveness of Tamarindus indica L. seed polysaccharides in removing fluoride from potable water collected from Sivakasi,Viruthunagar district, Tamil Nadu, India. The physiochemical properties of the water samples were examined, and each parameter was compared to the standard prescribed by Bureau of Indian standards. Most of the parameters were within the permissible limit except for fluoride levels in the Sivakasi water sample. Polysaccharides were isolated from Tamarindus indica L. seeds and the fluoride removal efficacy of the polysaccharides was evaluated. The optimum treatment dosage of the isolated seed polysaccharides was determined using aqueous fluoride solutions of various ppm concentrations (1, 2, 3, 4, and 5 ppm). Tamarindus polysaccharides were added to the aqueous solutions in varying doses (0.02, 0.04, 0.06, 0.08, 1.0, and 1.2 g), and 0.04 g was observed to be the most effective at removing fluoride (by 60%). It was selected as the optimum dose for treating the fluoride-contaminated water sample. Following the treatment, fluoride concentration in the water sample dropped from 1.8 mg/L to 0.91 mg/L, falling below the BIS standard limit. The findings from the study demonstrated the use of T. indica L. seed polysaccharides as an effective natural coagulant for removing fluoride from potable water. GC-MS and FTIR analysis of the isolated polysaccharide samples were performed. The FTIR results revealed the functional groups that might attribute to the fluoride removal activity of the isolated polysaccharides. The observations from the study suggested that Tamarindus polysaccharides might be used as an alternative to chemical agent used for fluoride removal in order to preserve the environment and human welfare.


Assuntos
Água Potável , Tamarindus , Humanos , Fluoretos , Índia , Polissacarídeos
10.
Mar Pollut Bull ; 189: 114766, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36870138

RESUMO

The distribution of heavy metals in the seafood intake by various age group representatives around the Kalpakkam coastal region was part of the baseline study. Totally 40 different types of fish species were estimated on heavy metals (Cu, Cr, Co, Cd, Pb, Ni, Zn, and Mn) in the coastal zone; the average concentration of heavy metals were 0.71, 0.06, 0, 0, 0.07, 0.02, 1.06 and 0.36 ppm, respectively. Individual mean bioaccumulation index (IMBI) and Metal pollution index (MPI) with heavy metals distributed around the coastal zone were compared with fish tissue and were found to be higher for Zn and Cu. The human health risk was calculated using uncertainty modeling of risk assessment of Estimated daily intake (EDI), Maximum allowable consumption rate (CRlim), Target hazard quotient (THQ), and Hazard index (HI) were estimated for different age groups. Our present values were suggestively high (>1) for both kids and adults. The cumulative cancer risk assessment based on heavy metals and the Hospital-Based Cancer Registry (HBCR) compared to the region did not exceed the recommended threshold risk limit around the Kalpakkam coastal zone. Statistical analyses such as correlation, Principal component, and Cluster investigation ensure that heavy metal concentrations do not pose a major risk to occupants.


Assuntos
Metais Pesados , Neoplasias , Adulto , Animais , Humanos , Baías , Metais Pesados/análise , Peixes , Medição de Risco , Alimentos Marinhos/análise , Monitoramento Ambiental
11.
J Hazard Mater ; 452: 131200, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36958158

RESUMO

The preeminence of sulfonamide drug resistance genes in food waste (FW) and the increased utilization of high-strength organic FW in anaerobic digestion (AD) to enhance methane production have raised severe public health concerns in wastewater treatment plants worldwide. In this regard, the dissemination patterns of different sulfonamide resistance genes (sul1 and sul2) and their impact on the digester core microbiota during AD of FW leachate (FWL) were evaluated. The presence of various sulfonamide antibiotics (SAs) in FWL digesters improved the final methane yield by 37 % during AD compared with FWL digesters without SAs. Microbial population shifts towards hydrolytic, acidogenic, and acetogenic bacteria in the phyla Actinobacteriota, Bacteroidota, Chloroflexi, Firmicutes, Proteobacteria, and Synergistota occurred due to SA induced substrate digestion and absorption through active transport; butanoate, propanoate, and pyruvate metabolism; glycolysis; gluconeogenesis; the citrate cycle; and pentose phosphate pathway. The initial dominance of Methanosaeta (89-96 %) declined to 47-53 % as AD progressed and shifted towards Methanosarcina (40 %) in digesters with the highest SA concentrations at the end of AD. Dissemination of sul1 depended on class 1 integron gene (intl1)-based horizontal gene transfer to pathogenic members of Chloroflexi, Firmicutes, and Patescibacteria, whereas sul2 was transmitted to Synergistota independent of intl1. Low susceptibility and ability to utilize SAs during methanogenesis shielded methanogenic archaea against selection pressure, thus preventing them from interacting with sul or intl1 genes, thereby minimizing the risk of antibiotic resistance development. The observed emergence of cationic antimicrobial peptide, vancomycin, and ß-lactam resistance in the core microbiota during AD of FWL in the presence of SAs suggests that multidrug resistance caused by bacterial transformation could lead to an increase in the environmental resistome through wastewater sludge treatment.


Assuntos
Chloroflexi , Microbiota , Eliminação de Resíduos , Anaerobiose , Alimentos , Microbiota/genética , Esgotos/microbiologia , Bactérias/metabolismo , Sulfanilamida , Antibacterianos/metabolismo , Firmicutes , Metano/metabolismo , Reatores Biológicos
12.
Environ Res ; 227: 115716, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36940816

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are considered a major class of organic contaminants or pollutants, which are poisonous, mutagenic, genotoxic, and/or carcinogenic. Due to their ubiquitous occurrence and recalcitrance, PAHs-related pollution possesses significant public health and environmental concerns. Increasing the understanding of PAHs' negative impacts on ecosystems and human health has encouraged more researchers to focus on eliminating these pollutants from the environment. Nutrients available in the aqueous phase, the amount and type of microbes in the culture, and the PAHs' nature and molecular characteristics are the common factors influencing the microbial breakdown of PAHs. In recent decades, microbial community analyses, biochemical pathways, enzyme systems, gene organization, and genetic regulation related to PAH degradation have been intensively researched. Although xenobiotic-degrading microbes have a lot of potential for restoring the damaged ecosystems in a cost-effective and efficient manner, their role and strength to eliminate the refractory PAH compounds using innovative technologies are still to be explored. Recent analytical biochemistry and genetically engineered technologies have aided in improving the effectiveness of PAHs' breakdown by microorganisms, creating and developing advanced bioremediation techniques. Optimizing the key characteristics like the adsorption, bioavailability, and mass transfer of PAH boosts the microorganisms' bioremediation performance, especially in the natural aquatic water bodies. This review's primary goal is to provide an understanding of recent information about how PAHs are degraded and/or transformed in the aquatic environment by halophilic archaea, bacteria, algae, and fungi. Furthermore, the removal mechanisms of PAH in the marine/aquatic environment are discussed in terms of the recent systemic advancements in microbial degradation methodologies. The review outputs would assist in facilitating the development of new insights into PAH bioremediation.


Assuntos
Poluentes Ambientais , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Humanos , Biodegradação Ambiental , Ecossistema , Água , Poluentes Ambientais/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poluentes do Solo/análise
13.
Chemosphere ; 320: 138022, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36739983

RESUMO

In conventional, the biologically treated tannery wastewaters are rich in dissolved organics and the application of reverse osmosis (RO) to biologically treated tannery wastewater was challenged with fouling and failure of RO membrane due to existence of lingering dissolved organic compounds. In present investigation the bacterial cell immobilized packed bed reactor (CIPBR) was operated to remove the dissolved organic compounds in biologically treated post-tanning wastewater to avoid membrane fouling in RO. The efficient microbial syndicate to eliminate dissolved organics in post-tanning wastewater was isolated and immobilized on to the carbon silica matrix (CSM) in the range of 2.98 ± 0.2 × 107 cells gm-1 of CSM and the same was used as a carrier matrix in the packed bed reactor. The CIPBR established the CODtot, CODdis and BOD removal efficiency by 61 ± 4%, 57 ± 4% and 87 ± 3% respectively with CODtot, CODdis and BOD remained in the treated wastewater as 236 ± 21 mg/L, 228 ± 21 mg/L, and 12 ± 3 mg/L under continuous operation. The removal of dissolved organic compounds from the post-tanning wastewater was confirmed using UV-Visible and FT-IR spectroscopic studies. Among the total microbial community, the phylum Proteobacteria played most abundant role with 48.47% of relative abundance for the removal of dissolved organics in biologically treated post-tanning wastewater. The significance of the study is to replace the tertiary treatment unit operation in the conventional ETP/CETP to remove dissolved organics in wastewater.


Assuntos
Microbiota , Águas Residuárias , Matéria Orgânica Dissolvida , Espectroscopia de Infravermelho com Transformada de Fourier , Filtração , Carbono , Eliminação de Resíduos Líquidos/métodos , Reatores Biológicos/microbiologia
14.
Chemosphere ; 316: 137849, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36642133

RESUMO

Aquaponics combines the advantages of aquaculture and hydroponics as it suits the urban environment where a lack of agricultural land and water resources is observed. It is an ecologically sound system that completely reuses its system waste as plant fertilizer. It offers sustainable water savings, making it a supreme technology for food production. The two major processes that hold the system together are nitrification and denitrification. The remains of fish in form of ammonia reach the bio filters where it is converted into nitrite and further into nitrate in presence of nitrifying and denitrifying bacteria. Nitrate eventually is taken up by the plants. However, even after the uptake from the flow stream, the effluent contains remaining ammonium and nitrates, which cannot be directly released into the environment. In this review it is suggested how integrating the biofilm-based bioreactors in addition to aquaculture and hydroponics eliminates the possibility of remains of total ammonia nitrogen [TAN] contents, leading to bioremediation of effluent water from the system. Effluent water after releasing from a bioreactor can be reused in an aquaculture system, conditions provided in these bioreactors promote the growth of required bacteria and encourages the mutual development of plants and fishes and eventually leading to bioremediation of wastewater from aquaponics.


Assuntos
Nitrificação , Águas Residuárias , Animais , Amônia , Nitratos , Desnitrificação , Biodegradação Ambiental , Bactérias , Nitrogênio/análise , Peixes/microbiologia , Reatores Biológicos/microbiologia , Biofilmes , Água
15.
Bioresour Technol ; 372: 128679, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36706818

RESUMO

In recent years, biofuel or biogas have become the primary source of bio-energy, providing an alternative to conventionally used energy that can meet the growing energy demand for people all over the world while reducing greenhouse gas emissions. Enzyme hydrolysis in bioethanol production is a critical step in obtaining sugars fermented during the final fermentation process. More efficient enzymes are being researched to provide a more cost-effective technique during enzymatic hydrolysis. The exploitation of microbial catabolic biochemical reactions to produce electric energy can be used for complex renewable biomasses and organic wastes in microbial fuel cells. In hydrolysis methods, a variety of diverse enzyme strategies are used to promote efficient bioethanol production from various lignocellulosic biomasses like agricultural wastes, wood feedstocks, and sea algae. This paper investigates the most recent enzyme hydrolysis pathways, microbial fermentation, microbial fuel cells, and anaerobic digestion in the manufacture of bioethanol/bioenergy from lignocellulose biomass.


Assuntos
Fontes de Energia Bioelétrica , Biocombustíveis , Biomassa , Fermentação , Hidrólise
16.
Environ Monit Assess ; 195(1): 10, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36269455

RESUMO

Phenol, an aromatic chemical commonly found in domestic and industrial effluents, upon its introduction into aquatic ecosystems adversely affects the indigenous biota, the invertebrates and the vertebrates. With the increased demand for agrochemicals, a large amount of phenol is released directly into the environment as a byproduct. Phenol and its derivatives tend to persist in the environment for longer periods which in turn poses a threat to both humans and the aquatic ecosystem. In our current study, the response of Labeo rohita to sublethal concentrations of phenol was observed and the results did show a regular decrease in biochemical constituents of the targeted organs. Exposure of Labeo rohita to sublethal concentration of phenol (22.32 mg/L) for an epoch of 7, 21 and 28 days shows a decline in lipid, protein, carbohydrate content and phosphatase activity in target organs such as the gills, muscle, intestine, liver and kidney of the fish. The present study also aims to investigate the toxic effects of phenol with special reference to the haematological parameters of Labeo rohita. At the end of the exposure period, the blood of the fish was collected by cutting the caudal peduncle with a surgical scalpel. And it was observed that the red blood corpuscle count (RBC), white blood corpuscle (WBC), haemoglobin count (Hb), packed cell volume (PCV), mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH) and mean corpuscular haemoglobin concentration (MCHC) values showed a decline after exposure to phenol for 7 days, while white blood corpuscle (WBC) shows an increased count. At 21 days and 28 days, all the haematological parameters showed a significant decrease.


Assuntos
Cyprinidae , Fenol , Poluentes da Água , Animais , Humanos , Agroquímicos , Carboidratos , Cyprinidae/metabolismo , Ecossistema , Monitoramento Ambiental , Água Doce/química , Hemoglobinas/metabolismo , Lipídeos , Fenol/toxicidade , Monoéster Fosfórico Hidrolases/metabolismo , Poluentes da Água/química , Poluentes da Água/toxicidade
17.
Environ Monit Assess ; 195(1): 12, 2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36271213

RESUMO

The goal of this study was to come up with an efficient method for treating cheese production wastewater. Because the effluent has a higher concentration of organic and inorganic materials, the indigenous microbial treatment process was used to effectively remove total dissolved solids (TDS), chemical oxygen demand (COD), and color without the addition of any nutrients. The indigenous microorganisms were tested for color, TDS, and COD elimination by growing them in "nutrient broth medium" loaded with different amounts of cheese effluent. The isolates were identified by 16S rRNA sequencing, and the results revealed that strain 1 was Enterobacter cloacae, strain 2 was Lactococcus garvieae, and strains 3 and 4 were Bacillus cereus and Bacillus mycoides, respectively. After 36 h of incubation, the data were evaluated. Among all the microbes, E. cloacae reduced TDS and COD from the effluent the most (80 ± 0.2% and 87 ± 0.4% COD, respectively). When compared to individual species, consortia were more efficient (86 ± 0.2% TDS and 90 ± 0.3% COD). On treatment, the correlation coefficient "r" for TDS and COD elimination was found to be 1, resulting in a positive linear connection. The current study suggests that microbial therapies are both effective and environmentally beneficial.


Assuntos
Queijo , Poluentes Ambientais , Monitoramento Ambiental , RNA Ribossômico 16S , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química
18.
Environ Res ; 215(Pt 2): 114314, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36116497

RESUMO

Nanoparticles are inevitable byproducts of modern industry. However, the environmental impacts arising from industrial applications of nanoparticles are largely under-reported. This study evaluated the ecotoxicological effects of aluminum oxide nanoparticles (Al2O3NP) and its influence on sulfacetamide (SA) biodegradation by a freshwater microalga, Scenedesmus obliquus. Although Al2O3NP showed limited toxicity effect on S. obliquus, we observed the toxicity attenuation aspect of Al2O3NP in a mixture of sulfacetamide on microalgae. The addition of 100 mg L-1 of Al2O3NP and 1 mg L-1 of SA reduced total chlorophyll by 23.3% and carotenoids by 21.6% in microalgal compared to control. The gene expression study demonstrated that ATPF0C, Lhcb1, HydA, and psbA genes responsible for ATP synthesis and the photosynthetic system were significantly downregulated, while the Tas gene, which plays a major role in biodegradation of organic xenobiotic chemicals, was significantly upregulated at 1 and 100 mg L-1 of Al2O3NP. The S. obliquus removed 16.8% of SA at 15 mg L-1 in 14 days. However, the removal was slightly enhanced (18.8%) at same concentration of SA in the presence of 50 mg L-1 Al2O3NP. This result proves the stability of sulfacetamide biodegradation capacity of S. obliquus in the presence of Al2O3NP co-contamination. The metabolic analysis showed that SA was degraded into simpler byproducts such as sulfacarbamide, sulfaguanidine, sulfanilamide, 4-(methyl sulfonyl)aniline, and N-hydroxy-benzenamine which have lower ecotoxicity than SA, demonstrating that the ecotoxicity of sulfacetamide has significantly decreased after the microalgal degradation, suggesting the environmental feasibility of microalgae-mediated wastewater technology. This study provides a deeper understanding of the impact of nanoparticles such as Al2O3NP on aquatic ecosystems.


Assuntos
Microalgas , Nanopartículas , Scenedesmus , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Óxido de Alumínio/toxicidade , Carotenoides/metabolismo , Carotenoides/farmacologia , Clorofila/metabolismo , Clorofila/farmacologia , Ecossistema , Água Doce , Nanopartículas/toxicidade , Scenedesmus/metabolismo , Sulfacetamida/metabolismo , Sulfacetamida/farmacologia , Sulfaguanidina/metabolismo , Sulfaguanidina/farmacologia , Águas Residuárias , Xenobióticos/metabolismo
19.
Bioresour Technol ; 364: 128031, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36167178

RESUMO

The main objective of this review is to provide up to date, brief, irrefutable, organized data on the conducted experiments on a range of emerging recalcitrant compounds such as Diclofenac (DCF), Chlorophenols (CPs), tetracycline (TCs), Triclosan (TCS), Bisphenol A (BPA) and Carbamazepine (CBZ). These compounds were selected from the categories of pharmaceutical contaminants (PCs), endocrine disruptors (EDs) and personal care products (PCPs) on the basis of their toxicity and concentration retained in the environment. In this context, detailed mechanism of laccase mediated degradation has been conversed that laccase assisted degradation occurs by one electron oxidation involving redox potential as underlying element of the process. Further, converging towards biotechnology, laccase immobilization increased removal efficiency, storage and reusability through various experimentally conducted studies. Laccase is being considered noteworthy as mediators facilitate laccase in oxidation of non-phenolic compounds and thereby increasing its substrate range which is being discussed in further in the review. The laccase assisted degradation mechanism of each compound has been elucidated but further studies to undercover proper degradation mechanisms needs to be performed.

20.
Sci Total Environ ; 851(Pt 2): 158112, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-35985587

RESUMO

Organic-rich wastewater is a feasible feedstock for biohydrogen production. Numerous review on the performance of microorganisms and the diversity of their communities during a biohydrogen process were published. However, there is still no in-depth overview of enzymes for biohydrogen production from wastewater and their scale-up applications. This review aims at providing an insightful exploration of critical discussion in terms of: (i) the roles and applications of enzymes in wastewater-based biohydrogen fermentation; (ii) systematical introduction to the enzymatic processes of photo fermentation and dark fermentation; (iii) parameters that affect enzymatic performances and measures for enzyme activity/ability enhancement; (iv) biohydrogen production bioreactors; as well as (v) enzymatic biohydrogen production systems and their larger scales application. Furthermore, to assess the best applications of enzymes in biohydrogen production from wastewater, existing problems and feasible future studies on the development of low-cost enzyme production methods and immobilized enzymes, the construction of multiple enzyme cooperation systems, the study of biohydrogen production mechanisms, more effective bioreactor exploration, larger scales enzymatic biohydrogen production, and the enhancement of enzyme activity or ability are also addressed.


Assuntos
Hidrogênio , Águas Residuárias , Hidrogênio/análise , Enzimas Imobilizadas , Fermentação , Reatores Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...