Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell ; 32(8): 2639-2659, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32434855

RESUMO

Karrikins (KARs) are butenolides found in smoke that can influence germination and seedling development of many plants. The KAR signaling mechanism is hypothesized to be very similar to that of the plant hormone strigolactone (SL). Both pathways require the F-box protein MORE AXILLARY GROWTH2 (MAX2), and other core signaling components have shared ancestry. Putatively, KAR activates the receptor KARRIKIN INSENSITIVE2 (KAI2), triggering its association with the E3 ubiquitin ligase complex SCFMAX2 and downstream targets SUPPRESSOR OF MAX2 1 (SMAX1) and SMAX1-LIKE2 (SMXL2). Polyubiquitination and proteolysis of SMAX1 and SMXL2 then enable growth responses to KAR. However, many of the assumptions of this model have not been demonstrated. Therefore, we investigated the posttranslational regulation of SMAX1 from the model plant Arabidopsis (Arabidopsis thaliana). We find evidence that SMAX1 is degraded by KAI2-SCFMAX2 but is also subject to MAX2-independent turnover. We identify SMAX1 domains that are responsible for its nuclear localization, KAR-induced degradation, association with KAI2, and ability to interact with other SMXL proteins. KAI2 undergoes MAX2-independent degradation after KAR treatment, which we propose results from its association with SMAX1 and SMXL2. Finally, we discover an SMXL domain that mediates receptor-target interaction preferences in KAR and SL signaling, laying the foundation for understanding how these highly similar pathways evolved to fulfill different roles.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Furanos/farmacologia , Hidrolases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteólise , Piranos/farmacologia , Motivos de Aminoácidos , Proteínas de Transporte/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Sequência Conservada , Proteínas de Fluorescência Verde/metabolismo , Compostos Heterocíclicos com 3 Anéis/farmacologia , Hidrolases/química , Lactonas/farmacologia , Extratos Vegetais , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Transporte Proteico/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Deleção de Sequência , Relação Estrutura-Atividade , Nicotiana/efeitos dos fármacos
2.
Front Plant Sci ; 9: 1866, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619427

RESUMO

The jasmonic acid (JA) and gibberellic acid (GA) signaling pathways interact to coordinate stress responses and developmental processes. This coordination affects plant growth and yield, and is mediated by interactions between the repressors of each pathway, the JASMONATE ZIM-DOMAIN PROTEIN (JAZ) and DELLA proteins. In this study we attempted to identify rice (Oryza sativa) JAZs that interact with rice DELLAs such as SLENDER RICE 1 (SLR1). Analysis of protein-protein interactions showed that OsJAZ8 and OsJAZ9 interact with SLR1; OsJAZ9 also interacted with the SLR1-LIKE (SLRL) protein SLRL2. Based on this broader interaction, we explored the function of OsJAZ9 in JA and GA responses by analyzing transcript levels of the JA-responsive gene OsbHLH148 and the GA-responsive gene OsPIL14 in OsJAZ9-overexpressing (OsJAZ9-Ox) and osjaz9 mutant plants. OsbHLH148 and OsPIL14 encode key transcription factors controlling JA and GA responses, respectively, and JA and GA antagonistically regulate their expression. In OsJAZ9-Ox, the expression of OsbHLH148 was downregulated and the expression of OsPIL14 was upregulated. By contrast, in osjaz9 mutants, the expression of OsbHLH148 was upregulated and the expression of OsPIL14 was downregulated. These observations indicated that OsJAZ9 regulates both JA and GA responses in rice, and this finding was supported by the opposite expression patterns of OsDREB1s, downstream targets of OsbHLH148 and OsPIL14, in the OsJAZ9-Ox and osjaz9 plants. Together, these findings indicate that OsJAZ9 suppresses JA responses and promotes GA responses in rice, and the protein-protein interaction between OsJAZ9 and SLR1 is involved in the antagonistic interplay between JA and GA.

3.
Sci Rep ; 7(1): 10212, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28860478

RESUMO

Developmental flexibility under stress conditions largely relies on the interactions between hormones that mediate stress responses and developmental processes. In this study, we showed that the stress hormone jasmonic acid (JA) induces formation of extra xylem in the roots of wild-type Arabidopsis thaliana (Col-0). JA signaling mutants such as coronatine insensitive1-1 and jasmonate resistant1-1 did not form extra xylem in response to JA, but the JA biosynthesis mutant oxophytodienoate-reductase3 did form extra xylem. These observations suggested that the JA response promotes xylem development. To understand the mechanism, we examined the regulatory interaction between JA and cytokinin, a negative regulator of xylem development. JA treatment reduced cytokinin responses in the vasculature, and exogenous cytokinin nullified the effect of JA on formation of extra xylem. A time-course experiment showed that suppression of cytokinin responses by JA does not occur rapidly, but the JA-mediated xylem phenotype is tightly linked to the suppression of the cytokinin response. Further analysis of arabidopsis histidine phosphotransfer protein6-1 and myc2-3 mutants revealed that the JA-responsive transcription factor MYC2 regulates the expression of AHP6 in response to JA and expression of AHP6 is involved in the JA-mediated xylem phenotype.


Assuntos
Arabidopsis/citologia , Ciclopentanos/farmacologia , Citocininas/farmacologia , Oxilipinas/farmacologia , Xilema/crescimento & desenvolvimento , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Antagonismo de Drogas , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Mutação , Fenótipo , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Estresse Fisiológico , Xilema/efeitos dos fármacos
4.
Plant Physiol ; 174(1): 435-449, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28336770

RESUMO

Regulation of photosynthetic gene expression by plastid-encoded RNA polymerase (PEP) is essential for chloroplast development. The activity of PEP largely relies on at least 12 PEP-associated proteins (PAPs) encoded in the nuclear genome of plant cells. A recent model proposed that these PAPs regulate the establishment of the PEP complex through broad PAP-PEP or PAP-PAP interactions. In this study, we identified the Arabidopsis (Arabidopsis thaliana) seedling-lethal mutant ptac10-1, which has defects in chloroplast development, and found that the mutant phenotype is caused by the suppression of PLASTID S1 RNA-BINDING DOMAIN PROTEIN (pTAC10/PAP3). Analysis of the heterozygous mutant and pTAC10-overexpressing transgenic plants indicated that the expression level of pTAC10 is tightly linked to chloroplast development. Characterization of the interaction of pTAC10 with PAPs revealed that pTAC10 interacts with other PAPs, such as FSD2, FSD3, TrxZ, pTAC7, and pTAC14, but it does not interact with PEP core enzymes, such as rpoA and rpoB. Analysis of pTAC10 interactions using truncated pTAC10 proteins showed that the pTAC10 carboxyl-terminal region downstream of the S1 domain is involved in the pTAC10-PAP interaction. Furthermore, overexpression of truncated pTAC10s lacking the C-terminal regions downstream of the S1 domain could not rescue the ptac10-1 mutant phenotype and induced an abnormal whitening phenotype in Columbia-0 plants. Our observations suggested that these pTAC10-PAP interactions are essential for the formation of the PEP complex and chloroplast development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Plastídeos/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Cloroplastos/genética , Cloroplastos/ultraestrutura , RNA Polimerases Dirigidas por DNA/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Microscopia Eletrônica de Transmissão , Mutação , Plantas Geneticamente Modificadas , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA