Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(13): eadj9600, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38536932

RESUMO

Recently identified human FOXP3lowCD45RA- inflammatory non-suppressive (INS) cells produce proinflammatory cytokines, exhibit reduced suppressiveness, and promote antitumor immunity unlike conventional regulatory T cells (Tregs). In spite of their implication in tumors, the mechanism for generation of FOXP3lowCD45RA- INS cells in vivo is unclear. We showed that the FOXP3lowCD45RA- cells in human tumors demonstrate attenuated expression of CRIF1, a vital mitochondrial regulator. Mice with CRIF1 deficiency in Tregs bore Foxp3lowINS-Tregs with mitochondrial dysfunction and metabolic reprograming. The enhanced glutaminolysis activated α-ketoglutarate-mTORC1 axis, which promoted proinflammatory cytokine expression by inducing EOMES and SATB1 expression. Moreover, chromatin openness of the regulatory regions of the Ifng and Il4 genes was increased, which facilitated EOMES/SATB1 binding. The increased α-ketoglutarate-derived 2-hydroxyglutarate down-regulated Foxp3 expression by methylating the Foxp3 gene regulatory regions. Furthermore, CRIF1 deficiency-induced Foxp3lowINS-Tregs suppressed tumor growth in an IFN-γ-dependent manner. Thus, CRIF1 deficiency-mediated mitochondrial dysfunction results in the induction of Foxp3lowINS-Tregs including FOXP3lowCD45RA- cells that promote antitumor immunity.


Assuntos
Proteínas de Ligação à Região de Interação com a Matriz , Doenças Mitocondriais , Neoplasias , Humanos , Camundongos , Animais , Linfócitos T Reguladores , Ácidos Cetoglutáricos/metabolismo , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Citocinas/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo
2.
Front Cell Neurosci ; 18: 1354900, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38440150

RESUMO

nArgBP2, a protein whose disruption is implicated in intellectual disability, concentrates in excitatory spine-synapses. By forming a triad with GKAP and SHANK, it regulates spine structural rearrangement. We here find that GKAP and SHANK3 concentrate close to the synaptic contact, whereas nArgBP2 concentrates more centrally in the spine. The three proteins collaboratively form biomolecular condensates in living fibroblasts, exhibiting distinctive layered localizations. nArgBP2 concentrates in the inner phase, SHANK3 in the outer phase, and GKAP partially in both. Upon co-expression of GKAP and nArgBP2, they evenly distribute within condensates, with a notable peripheral localization of SHANK3 persisting when co-expressed with either GKAP or nArgBP2. Co-expression of SHANK3 and GKAP with CaMKIIα results in phase-in-phase condensates, with CaMKIIα at the central locus and SHANK3 and GKAP exhibiting peripheral localization. Additional co-expression of nArgBP2 maintains the layered organizational structure within condensates. Subsequent CaMKIIα activation disperses a majority of the condensates, with an even distribution of all proteins within the extant deformed condensates. Our findings suggest that protein segregation via phase separation may contribute to establishing layered organization in dendritic spines.

3.
BMC Biol ; 21(1): 248, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940973

RESUMO

BACKGROUND: Open-top light-sheet microscopy (OT-LSM) is a specialized microscopic technique for the high-throughput cellular imaging of optically cleared, large-sized specimens, such as the brain. Despite the development of various OT-LSM techniques, achieving submicron resolution in all dimensions remains. RESULTS: We developed a high-resolution open-top axially swept LSM (HR-OTAS-LSM) for high-throughput and high-resolution imaging in all dimensions. High axial and lateral resolutions were achieved by using an aberration-corrected axially swept excitation light sheet in the illumination arm and a high numerical aperture (NA) immersion objective lens in the imaging arm, respectively. The high-resolution, high-throughput visualization of neuronal networks in mouse brain and retina specimens validated the performance of HR-OTAS-LSM. CONCLUSIONS: The proposed HR-OTAS-LSM method represents a significant advancement in the high-resolution mapping of cellular networks in biological systems such as the brain and retina.


Assuntos
Encéfalo , Neurônios , Camundongos , Animais , Microscopia de Fluorescência/métodos
4.
Nat Methods ; 20(10): 1581-1592, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37723246

RESUMO

Here we report SUPPORT (statistically unbiased prediction utilizing spatiotemporal information in imaging data), a self-supervised learning method for removing Poisson-Gaussian noise in voltage imaging data. SUPPORT is based on the insight that a pixel value in voltage imaging data is highly dependent on its spatiotemporal neighboring pixels, even when its temporally adjacent frames alone do not provide useful information for statistical prediction. Such dependency is captured and used by a convolutional neural network with a spatiotemporal blind spot to accurately denoise voltage imaging data in which the existence of the action potential in a time frame cannot be inferred by the information in other frames. Through simulations and experiments, we show that SUPPORT enables precise denoising of voltage imaging data and other types of microscopy image while preserving the underlying dynamics within the scene.


Assuntos
Microscopia , Redes Neurais de Computação , Razão Sinal-Ruído , Distribuição Normal , Processamento de Imagem Assistida por Computador/métodos
5.
EMBO J ; 42(19): e113246, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37575021

RESUMO

Neuronal hyperactivity is a key feature of early stages of Alzheimer's disease (AD). Genetic studies in AD support that microglia act as potential cellular drivers of disease risk, but the molecular determinants of microglia-synapse engulfment associated with neuronal hyperactivity in AD are unclear. Here, using super-resolution microscopy, 3D-live imaging of co-cultures, and in vivo imaging of lipids in genetic models, we found that spines become hyperactive upon Aß oligomer stimulation and externalize phosphatidylserine (ePtdSer), a canonical "eat-me" signal. These apoptotic-like spines are targeted by microglia for engulfment via TREM2 leading to amelioration of Aß oligomer-induced synaptic hyperactivity. We also show the in vivo relevance of ePtdSer-TREM2 signaling in microglia-synapse engulfment in the hAPP NL-F knock-in mouse model of AD. Higher levels of apoptotic-like synapses in mice as well as humans that carry TREM2 loss-of-function variants were also observed. Our work supports that microglia remove hyperactive ePtdSer+ synapses in Aß-relevant context and suggest a potential beneficial role for microglia in the earliest stages of AD.


Assuntos
Doença de Alzheimer , Humanos , Camundongos , Animais , Doença de Alzheimer/genética , Microglia , Sinapses , Modelos Animais de Doenças , Peptídeos beta-Amiloides/genética , Glicoproteínas de Membrana/genética , Receptores Imunológicos/genética
6.
Biochim Biophys Acta Gene Regul Mech ; 1866(2): 194932, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36997115

RESUMO

The spatiotemporal sequestration of misfolded proteins is a mechanism by which cells counterbalance proteome homeostasis upon exposure to various stress stimuli. Chronic inhibition of proteasomes results in a large, juxtanuclear, membrane-less inclusion, known as the aggresome. Although the molecular mechanisms driving its formation, clearance, and pathophysiological implications are continuously being uncovered, the biophysical aspects of aggresomes remain largely uncharacterized. Using fluorescence recovery after photobleaching and liquid droplet disruption assays, we found that the aggresomes are a homogeneously blended condensates with liquid-like properties similar to droplets formed via liquid-liquid phase separation. However, unlike fluidic liquid droplets, aggresomes have more viscosity and hydrogel-like characteristics. We also observed that the inhibition of aggresome formation using microtubule-disrupting agents resulted in less soluble and smaller cytoplasmic speckles, which was associated with marked cytotoxicity. Therefore, the aggresome appears to be cytoprotective and serves as a temporal reservoir for dysfunctional proteasomes and substrates that need to be degraded. Our results suggest that the aggresome assembles through distinct and potentially sequential processes of energy-dependent retrograde transportation and spontaneous condensation into a hydrogel.


Assuntos
Hidrogéis , Complexo de Endopeptidases do Proteassoma , Complexo de Endopeptidases do Proteassoma/metabolismo , Hidrogéis/metabolismo , Proteínas/metabolismo , Corpos de Inclusão/metabolismo , Microtúbulos/metabolismo
7.
Proc Natl Acad Sci U S A ; 120(12): e2220649120, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36920925

RESUMO

Subthreshold depolarization enhances neurotransmitter release evoked by action potentials and plays a key role in modulating synaptic transmission by combining analog and digital signals. This process is known to be Ca2+ dependent. However, the underlying mechanism of how small changes in basal Ca2+ caused by subthreshold depolarization can regulate transmitter release triggered by a large increase in local Ca2+ is not well understood. This study aimed to investigate the source and signaling mechanisms of Ca2+ that couple subthreshold depolarization with the enhancement of glutamate release in hippocampal cultures and CA3 pyramidal neurons. Subthreshold depolarization increased presynaptic Ca2+ levels, the frequency of spontaneous release, and the amplitude of evoked release, all of which were abolished by blocking L-type Ca2+ channels. A high concentration of intracellular Ca2+ buffer or blockade of calmodulin abolished depolarization-induced increases in transmitter release. Estimation of the readily releasable pool size using hypertonic sucrose showed depolarization-induced increases in readily releasable pool size, and this increase was abolished by the blockade of calmodulin. Our results provide mechanistic insights into the modulation of transmitter release by subthreshold potential change and highlight the role of L-type Ca2+ channels in coupling subthreshold depolarization to the activation of Ca2+-dependent signaling molecules that regulate transmitter release.


Assuntos
Canais de Cálcio Tipo L , Cálcio , Potenciais Evocados , Ácido Glutâmico , Potenciais da Membrana , Canais de Cálcio Tipo L/metabolismo , Ácido Glutâmico/metabolismo , Calmodulina/metabolismo , Cálcio/metabolismo , Terminações Pré-Sinápticas/metabolismo , Neurotransmissores/metabolismo , Animais , Ratos , Células Cultivadas , Hipocampo/citologia , Neurônios/metabolismo , Ratos Sprague-Dawley , Transmissão Sináptica
8.
Exp Mol Med ; 55(1): 108-119, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36599935

RESUMO

nArgBP2, a candidate gene for intellectual disability, is a postsynaptic protein critical for dendritic spine development and morphogenesis, and its knockdown (KD) in developing neurons severely impairs spine-bearing excitatory synapse formation. Surprisingly, nArgBP2 KD in mature neurons did not cause morphological defects in the existing spines at rest, raising questions of how it functions in mature neurons. We found that unlike its inaction at rest, nArgBP2 KD completely inhibited the enlargement of dendritic spines during chemically induced long-term potentiation (cLTP) in mature neurons. We further found that nArgBP2 forms condensates in dendritic spines and that these condensates are dispersed by cLTP, which spatiotemporally coincides with spine head enlargement. Condensates with CaMKII phosphorylation-deficient mutant or CaMKII inhibition are neither dispersed nor accompanied by spine enlargement during cLTP. We found that nArgBP2 condensates in spines exhibited liquid-like properties, and in heterologous and in vitro expression systems, nArgBP2 undergoes liquid-liquid phase separation via multivalent intermolecular interactions between SH3 domains and proline-rich domains. It also forms coacervates with CaMKIIα, which is rapidly dissembled by calcium/CaMKIIα-dependent phosphorylation. We further showed that the interaction between nArgBP2 and WAVE1 competes with nArgBP2 phase separation and that blocking the nArgBP2-WAVE1 interaction prevents spine enlargement during cLTP. Together, our results suggest that nArgBP2 at rest is confined to the condensates but is released by CaMKIIα-mediated phosphorylation during synaptic plasticity, which regulates its timely interaction with WAVE1 to induce spine head enlargement in mature neurons.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Espinhas Dendríticas , Espinhas Dendríticas/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Condensados Biomoleculares , Plasticidade Neuronal/fisiologia , Potenciação de Longa Duração/fisiologia , Sinapses/metabolismo , Hipocampo/metabolismo
9.
mBio ; 14(1): e0154322, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36541760

RESUMO

Scrub typhus is a mite-borne disease caused by the obligately intracellular bacterium Orientia tsutsugamushi. We previously demonstrated that ScaA, an autotransporter membrane protein of O. tsutsugamushi, is commonly shared in various genotypes and involved in adherence to host cells. Here, we identified a mixed-lineage leukemia 5 (MLL5) mammalian trithorax group protein as a host receptor that interacts with ScaA. MLL5, identified by yeast two-hybrid screening, is an alternative splicing variant of MLL5 (vMLL5) which contains 13 exons with additional intron sequences encoding a tentative transmembrane domain. Indeed, vMLL5 is expressed on the plasma membrane as well as in intracellular compartments in eukaryotic cells and colocalized with adherent O. tsutsugamushi. In addition, ScaA-expressing Escherichia coli showed significantly increased adherence to vMLL5-overexpressing cells compared with vector control cells. We mapped the C-terminal region of the passenger domain of ScaA as a ligand for vMLL5 and determined that the Su(var)3-9, Enhancer of zeste, Trithorax (SET) domain of MLL5 is an essential and sufficient motif for ScaA binding. We observed significant and specific inhibition of bacterial adhesion to host cells in competitive inhibition assays using the C-terminal fragment of ScaA or the SET domain of vMLL5. Moreover, immunization with the C-terminal fragment of ScaA provided neutralizing activity and protective immunity against lethal challenge with O. tsutsugamushi as efficiently as vaccination with the whole passenger domain of ScaA. These results indicate that vMLL5 is a novel cellular receptor for ScaA-mediated adhesion of O. tsutsugamushi and facilitates bacterial adhesion to host cells, thereby enhancing bacterial infection. IMPORTANCE O. tsutsugamushi is a mite-borne pathogen that causes scrub typhus. As an obligately intracellular pathogen, its adhesion to and invasion of host cells are critical steps for bacterial growth. However, the molecular basis of the bacterial ligand and host receptor interaction is poorly defined. Here, we identified a splicing variant of MLL5 (vMLL5) as a cellular adhesion receptor of ScaA, an outer membrane autotransporter protein of O. tsutsugamushi. We mapped the interacting domains in the bacterial ligand and host receptor and confirmed their functional interaction. In addition, immunization with the C-terminal region of ScaA, which involves an interaction with the SET domain of vMLL5, not only induces enhanced neutralizing antibodies but also provides protective immunity against lethal challenge with O. tsutsugamushi.


Assuntos
Orientia tsutsugamushi , Tifo por Ácaros , Animais , Humanos , Processamento Alternativo , Ligantes , Mamíferos/metabolismo , Proteínas de Membrana/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Orientia tsutsugamushi/genética , Orientia tsutsugamushi/metabolismo , Tifo por Ácaros/microbiologia , Tifo por Ácaros/prevenção & controle , Sistemas de Secreção Tipo V/metabolismo , Proteínas de Bactérias/metabolismo
10.
IEEE Trans Vis Comput Graph ; 29(2): 1424-1437, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-34591770

RESUMO

Dendritic spines are dynamic, submicron-scale protrusions on neuronal dendrites that receive neuronal inputs. Morphological changes in the dendritic spine often reflect alterations in physiological conditions and are indicators of various neuropsychiatric conditions. However, owing to the highly dynamic and heterogeneous nature of spines, accurate measurement and objective analysis of spine morphology are major challenges in neuroscience research. Most conventional approaches for analyzing dendritic spines are based on two-dimensional (2D) images, which barely reflect the actual three-dimensional (3D) shapes. Although some recent studies have attempted to analyze spines with various 3D-based features, it is still difficult to objectively categorize and analyze spines based on 3D morphology. Here, we propose a unified visualization framework for an interactive 3D dendritic spine analysis system, DXplorer, that displays 3D rendering of spines and plots the high-dimensional features extracted from the 3D mesh of spines. With this system, users can perform the clustering of spines interactively and explore and analyze dendritic spines based on high-dimensional features. We propose a series of high-dimensional morphological features extracted from a 3D mesh of dendritic spines. In addition, an interactive machine learning classifier with visual exploration and user feedback using an interactive 3D mesh grid view ensures a more precise classification based on the spine phenotype. A user study and two case studies were conducted to quantitatively verify the performance and usability of the DXplorer. We demonstrate that the system performs the entire analytic process effectively and provides high-quality, accurate, and objective analysis.


Assuntos
Gráficos por Computador , Espinhas Dendríticas , Espinhas Dendríticas/fisiologia , Neurônios , Aprendizado de Máquina , Interpretação Estatística de Dados
11.
Cell Death Discov ; 8(1): 503, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36585413

RESUMO

Among the five members of the dual-specificity tyrosine-phosphorylation-regulated kinase (DYRK) family, the cellular functions of DYRK3 have not been fully elucidated. Some studies have indicated limited physiological roles and substrates of DYRK3, including promotion of glioblastoma, requirement in influenza virus replication, and coupling of stress granule condensation with mammalian target of rapamycin complex 1 signaling. Here, we demonstrate that serum deprivation causes a decrease in intracellular DYRK3 levels via the proteolytic autophagy pathway, as well as the suppression of DYRK3 gene expression. To further demonstrate how DYRK3 affects cell viability, especially in neurons, we used a yeast two-hybrid assay and identified multiple DYRK3-binding proteins, including SNAPIN, a SNARE-associated protein implicated in synaptic transmission. We also found that DYRK3 directly phosphorylates SNAPIN at the threonine (Thr) 14 residue, increasing the interaction of SNAPIN with other proteins such as dynein and synaptotagmin-1. In central nervous system neurons, SNAPIN is associated with and mediate the retrograde axonal transport of diverse cellular products from the distal axon terminal to the soma and the synaptic release of neurotransmitters, respectively. Moreover, phosphorylation of SNAPIN at Thr-14 was found to positively modulate mitochondrial retrograde transport in mouse cortical neurons and the recycling pool size of synaptic vesicles, contributing to neuronal viability. In conclusion, the present study demonstrates that DYRK3 phosphorylates SNAPIN, positively regulating the dynein-mediated retrograde transport of mitochondria and SNARE complex-mediated exocytosis of synaptic vesicles within the neurons. This finding further suggests that DYRK3 affects cell viability and provides a novel neuroprotective mechanism.

12.
Opt Express ; 30(11): 19152-19164, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36221700

RESUMO

In microscopic imaging of biological tissues, particularly real-time visualization of neuronal activities, rapid acquisition of volumetric images poses a prominent challenge. Typically, two-dimensional (2D) microscopy can be devised into an imaging system with 3D capability using any varifocal lens. Despite the conceptual simplicity, such an upgrade yet requires additional, complicated device components and usually suffers from a reduced acquisition rate, which is critical to properly document rapid neurophysiological dynamics. In this study, we implemented an electrically tunable lens (ETL) in the line-scan confocal microscopy (LSCM), enabling the volumetric acquisition at the rate of 20 frames per second with a maximum volume of interest of 315 × 315 × 80 µm3. The axial extent of point-spread-function (PSF) was 17.6 ± 1.6 µm and 90.4 ± 2.1 µm with the ETL operating in either stationary or resonant mode, respectively, revealing significant depth axial penetration by the resonant mode ETL microscopy. We further demonstrated the utilities of the ETL system by volume imaging of both cleared mouse brain ex vivo samples and in vivo brains. The current study showed a successful application of resonant ETL for constructing a high-performance 3D axially scanning LSCM (asLSCM) system. Such advances in rapid volumetric imaging would significantly enhance our understanding of various dynamic biological processes.


Assuntos
Cristalino , Lentes , Animais , Eletricidade , Camundongos , Microscopia Confocal/métodos , Cintilografia
13.
Nat Commun ; 13(1): 3297, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35676288

RESUMO

Volumetric imaging by fluorescence microscopy is often limited by anisotropic spatial resolution, in which the axial resolution is inferior to the lateral resolution. To address this problem, we present a deep-learning-enabled unsupervised super-resolution technique that enhances anisotropic images in volumetric fluorescence microscopy. In contrast to the existing deep learning approaches that require matched high-resolution target images, our method greatly reduces the effort to be put into practice as the training of a network requires only a single 3D image stack, without a priori knowledge of the image formation process, registration of training data, or separate acquisition of target data. This is achieved based on the optimal transport-driven cycle-consistent generative adversarial network that learns from an unpaired matching between high-resolution 2D images in the lateral image plane and low-resolution 2D images in other planes. Using fluorescence confocal microscopy and light-sheet microscopy, we demonstrate that the trained network not only enhances axial resolution but also restores suppressed visual details between the imaging planes and removes imaging artifacts.


Assuntos
Aprendizado Profundo , Anisotropia , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos
14.
Commun Biol ; 5(1): 431, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534680

RESUMO

Various optical clearing approaches have been introduced to meet the growing demand for 3D volume imaging of biological structures. Each has its own strengths but still suffers from low transparency, long incubation time, processing complexity, tissue deformation, or fluorescence quenching, and a single solution that best satisfies all aspects has yet been developed. Here, we develop OptiMuS, an optimized single-step solution that overcomes the shortcomings of the existing aqueous-based clearing methods and that provides the best performance in terms of transparency, clearing rate, and size retention. OptiMuS achieves rapid and high transparency of brain tissues and other intact organs while preserving the size and fluorescent signal of the tissues. Moreover, OptiMuS is compatible with the use of lipophilic dyes, revealing DiI-labeled vascular structures of the whole brain, kidney, spleen, and intestine, and is also applied to 3D quantitative and comparative analysis of DiI-labeled vascular structures of glomeruli turfs in normal and diseased kidneys. Together, OptiMuS provides a single-step solution for simple, fast, and versatile optical clearing method to obtain high tissue transparency with minimum structural changes and is widely applicable for 3D imaging of various whole biological structures.


Assuntos
Imageamento Tridimensional , Imagem Óptica , Encéfalo/diagnóstico por imagem , Corantes , Imageamento Tridimensional/métodos , Imagem Óptica/métodos
15.
Small Methods ; 6(1): e2100943, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35041279

RESUMO

Recent surges of optical clearing provided anatomical maps to understand structure-function relationships at organ scale. Detergent-mediated lipid removal enhances optical clearing and allows efficient penetration of antibodies inside tissues, and sodium dodecyl sulfate (SDS) is the most common choice for this purpose. SDS, however, forms large micelles and has a low critical micelle concentration (CMC). Theoretically, detergents that form smaller micelles and higher CMC should perform better but these have remained mostly unexplored. Here, SCARF, a sodium cholate (SC)-based active delipidation method, is developed for better clearing and immunolabeling of thick tissues or whole organs. It is found that SC has superior properties to SDS as a detergent but has serious problems; precipitation and browning. These limitations are overcome by using the ion-conductive film to confine SC while enabling high conductivity. SCARF renders orders of magnitude faster tissue transparency than the SDS-based method, while excellently preserving the endogenous fluorescence, and enables much efficient penetration of a range of antibodies, thus revealing structural details of various organs including sturdy post-mortem human brain tissues at the cellular resolution. Thus, SCARF represents a robust and superior alternative to the SDS-based clearing methods and is expected to facilitate the 3D morphological mapping of various organs.


Assuntos
Micelas , Colato de Sódio , Autopsia , Humanos , Colato de Sódio/química , Dodecilsulfato de Sódio/química
16.
Mol Brain ; 14(1): 137, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34496937

RESUMO

We recently showed that synaptophysin (Syph) and synapsin (Syn) can induce liquid-liquid phase separation (LLPS) to cluster small synaptic-like microvesicles in living cells which are highly reminiscent of SV cluster. However, as there is no physical interaction between them, the underlying mechanism for their coacervation remains unknown. Here, we showed that the coacervation between Syph and Syn is primarily governed by multivalent pi-cation electrostatic interactions among tyrosine residues of Syph C-terminal (Ct) and positively charged Syn. We found that Syph Ct is intrinsically disordered and it alone can form liquid droplets by interactions among themselves at high concentration in a crowding environment in vitro or when assisted by additional interactions by tagging with light-sensitive CRY2PHR or subunits of a multimeric protein in living cells. Syph Ct contains 10 repeated sequences, 9 of them start with tyrosine, and mutating 9 tyrosine to serine (9YS) completely abolished the phase separating property of Syph Ct, indicating tyrosine-mediated pi-interactions are critical. We further found that 9YS mutation failed to coacervate with Syn, and since 9YS retains Syph's negative charge, the results indicate that pi-cation interactions rather than simple charge interactions are responsible for their coacervation. In addition to revealing the underlying mechanism of Syph and Syn coacervation, our results also raise the possibility that physiological regulation of pi-cation interactions between Syph and Syn during synaptic activity may contribute to the dynamics of synaptic vesicle clustering.


Assuntos
Vesículas Secretórias/química , Sinapsinas/química , Sinaptofisina/química , Substituição de Aminoácidos , Animais , Soluções Tampão , Células COS , Chlorocebus aethiops , Recuperação de Fluorescência Após Fotodegradação , Genes Reporter , Glicóis/farmacologia , Humanos , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Líquidos Iônicos/química , Proteínas Luminescentes/análise , Camundongos , Mutação de Sentido Incorreto , Concentração Osmolar , Transição de Fase , Fotoquímica , Mutação Puntual , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/efeitos da radiação , Vesículas Secretórias/efeitos da radiação , Eletricidade Estática , Sinaptofisina/genética , Sinaptofisina/efeitos da radiação , Imagem com Lapso de Tempo , Tirosina/química , Proteína Vermelha Fluorescente
17.
Biomed Opt Express ; 12(4): 2328-2338, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33996232

RESUMO

Open-top light-sheet microscopy (OT-LSM) is a specialized microscopic technique for high throughput cellular imaging of large tissue specimens including optically cleared tissues by having the entire optical setup below the sample stage. Current OT-LSM systems had relatively low axial resolutions by using weakly focused light sheets to cover the imaging field of view (FOV). In this report, open-top axially swept LSM (OTAS-LSM) was developed for high-throughput cellular imaging with improved axial resolution. OTAS-LSM swept a tightly focused excitation light sheet across the imaging FOV using an electro tunable lens (ETL) and collected emission light at the focus of the light sheet with a camera in the rolling shutter mode. OTAS-LSM was developed by using air objective lenses and a liquid prism and it had on-axis optical aberration associated with the mismatch of refractive indices between air and immersion medium. The effects of optical aberration were analyzed by both simulation and experiment, and the image resolutions were under 1.6µm in all directions. The newly developed OTAS-LSM was applied to the imaging of optically cleared mouse brain and small intestine, and it demonstrated the single-cell resolution imaging of neuronal networks. OTAS-LSM might be useful for the high-throughput cellular examination of optically cleared large tissues.

18.
Mol Brain ; 14(1): 47, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33663553

RESUMO

Na+(K+)/H+ exchanger 6 (NHE6) on synaptic vesicle (SV) is critical for the presynaptic regulation of quantal size at the glutamatergic synapses by converting the chemical gradient (ΔpH) into membrane potential (Δψ) across the SV membrane. We recently found that NHE6 directly interacts with secretory carrier membrane protein 5 (SCAMP5), and SCAMP5-dependent recruitment of NHE6 to SVs controls the strength of synaptic transmission by modulation of quantal size of glutamate release at rest. It is, however, unknown whether NHE6 recruitment by SCAMP5 plays a role during synaptic plasticity. Here, we found that the number of NHE6-positive presynaptic boutons was significantly increased by the chemical long-term potentiation (cLTP). Since cLTP involves new synapse formation, our results indicated that NHE6 was recruited not only to the existing presynaptic boutons but also to the newly formed presynaptic boutons. Knock down of SCAMP5 completely abrogated the enhancement of NHE6 recruitment by cLTP. Interestingly, despite an increase in the number of NHE6-positive boutons by cLTP, the quantal size of glutamate release at the presynaptic terminals remained unaltered. Together with our recent results, our findings indicate that SCAMP5-dependent recruitment of NHE6 plays a critical role in manifesting presynaptic efficacy not only at rest but also during synaptic plasticity. Since both are autism candidate genes, reduced presynaptic efficacy by interfering with their interaction may underlie the molecular mechanism of synaptic dysfunction observed in autism.


Assuntos
Proteínas de Membrana/metabolismo , Plasticidade Neuronal , Trocadores de Sódio-Hidrogênio/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Células Cultivadas , Colforsina/farmacologia , Ácido Glutâmico/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , Ratos Sprague-Dawley , Vesículas Sinápticas/efeitos dos fármacos
20.
Nat Commun ; 12(1): 263, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431828

RESUMO

Clusters of tightly packed synaptic vesicles (SVs) are a defining feature of nerve terminals. While SVs are mobile within the clusters, the clusters have no boundaries consistent with a liquid phase. We previously found that purified synapsin, a peripheral SV protein, can assemble into liquid condensates and trap liposomes into them. How this finding relates to the physiological formation of SV clusters in living cells remains unclear. Here, we report that synapsin alone, when expressed in fibroblasts, has a diffuse cytosolic distribution. However, when expressed together with synaptophysin, an integral SV membrane protein previously shown to be localized on small synaptic-like microvesicles when expressed in non-neuronal cells, is sufficient to organize such vesicles in clusters highly reminiscent of SV clusters and with liquid-like properties. This minimal reconstitution system can be a powerful model to gain mechanistic insight into the assembly of structures which are of fundamental importance in synaptic transmission.


Assuntos
Neurônios/metabolismo , Sinapsinas/metabolismo , Vesículas Sinápticas/metabolismo , Sinaptofisina/metabolismo , Animais , Células COS , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Chlorocebus aethiops , Citosol/metabolismo , Endocitose , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Humanos , Camundongos , Eletricidade Estática , Vesículas Sinápticas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...