Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 22(6): 777-785, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37217701

RESUMO

Hydrogels are extensively used as tunable, biomimetic three-dimensional cell culture matrices, but optically deep, high-resolution images are often difficult to obtain, limiting nanoscale quantification of cell-matrix interactions and outside-in signalling. Here we present photopolymerized hydrogels for expansion microscopy that enable optical clearance and tunable ×4.6-6.7 homogeneous expansion of not only monolayer cell cultures and tissue sections, but cells embedded within hydrogels. The photopolymerized hydrogels for expansion microscopy formulation relies on a rapid photoinitiated thiol/acrylate mixed-mode polymerization that is not inhibited by oxygen and decouples monomer diffusion from polymerization, which is particularly beneficial when expanding cells embedded within hydrogels. Using this technology, we visualize human mesenchymal stem cells and their interactions with nascently deposited proteins at <120 nm resolution when cultured in proteolytically degradable synthetic polyethylene glycol hydrogels. Results support the notion that focal adhesion maturation requires cellular fibronectin deposition; nuclear deformation precedes cellular spreading; and human mesenchymal stem cells display cell-surface metalloproteinases for matrix remodelling.


Assuntos
Hidrogéis , Microscopia , Humanos , Hidrogéis/farmacologia , Proteínas , Técnicas de Cultura de Células/métodos , Materiais Biocompatíveis , Polietilenoglicóis
2.
J Mater Chem B ; 10(46): 9590-9598, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36106522

RESUMO

Cirrhosis is a major cause of global morbidity and mortality, and significantly leads to a heightened risk of liver cancer. Despite decades of efforts in seeking for cures for cirrhosis, this disease remains irreversible. To assist in the advancement of understanding toward cirrhosis as well as therapeutic options, various disease models, each with different strengths, are developed. With the development of three-dimensional (3D) cell culture in recent years, more realistic biochemical properties are observed in 3D cell models, which have gradually taken over the responsibilities of traditional 2D cell culture, and are expected to replace some of the animal models in the near future. Here, we propose a 3D fibrotic liver model inspired by liver lobules. In the model, 3D-printed poly(glycerol sebacate) acrylate (PGSA) scaffolds facilitated the formation of 3D tissues and guided the deposition of fibrotic structures. Through the sequential seeding of hepatic stellate cells (HSCs), HepG2 and HSCs, fibrotic septum-like tissues were created on PGSA scaffolds. As albumin secretion is considered a rather important function of the liver and is found only among hepatic cells, the detection of albumin secretion up to 30 days indicates the mimicking of basic liver functions. Moreover, the in vivo fibrotic tissue shows a high similarity to fibrotic septa. Finally, via complete encapsulation of HSCs, a down-regulated albumin secretion profile was observed in the capped model, which is a metabolic indicator that is important for the prognosis for liver cirrhosis. Looking forward, the incorporation of the vasculature will further upgrade the model into a sound tool for liver research and associated treatments.


Assuntos
Células Estreladas do Fígado , Cirrose Hepática , Animais , Células Estreladas do Fígado/patologia , Cirrose Hepática/tratamento farmacológico , Fibrose , Albuminas/metabolismo , Acrilatos , Impressão Tridimensional
3.
Biomaterials ; 277: 121097, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34481290

RESUMO

Skeletal muscle tissue is mechanically dynamic with changes in stiffness influencing function, maintenance, and regeneration. We modeled skeletal muscle mechanical changes in culture with dynamically stiffening hydrogels demonstrating that the chaperone protein BAG3 transduces matrix stiffness by redistributing YAP and TAZ subcellular localization in muscle progenitor cells. BAG3 depletion increases cytoplasmic retention of YAP and TAZ, desensitizing myoblasts to changes in hydrogel elastic moduli. Upon differentiation, muscle progenitors depleted of BAG3 formed enlarged, round myotubes lacking the typical cylindrical morphology. The aberrant morphology is dependent on YAP/TAZ signaling, which was sequestered in the cytoplasm in BAG3-depleted myotubes but predominately nuclear in cylindrical myotubes of control cells. Control progenitor cells induced to differentiate on soft (E' = 4 and 12 kPa) hydrogels formed circular myotubes similar to those observed in BAG3-depleted cells. Inhibition of the Hippo pathway partially restored myotube morphologies, permitting nuclear translocation of YAP and TAZ in BAG3-depleted myogenic progenitors. Thus, BAG3 is a critical mediator of dynamic stiffness changes in muscle tissue, coupling mechanical alterations to intracellular signals and inducing changes in gene expression that influence muscle progenitor cell morphology and differentiation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Mecanotransdução Celular , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo
4.
Biofabrication ; 12(3): 035024, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-31918413

RESUMO

The regeneration of damaged or lost tissue is considered to be a critical step toward realizing full organ regeneration in modern medicine. Although surgical techniques continue to advance, treatment for missing tissues in irregular wounds remains particularly difficult. With increasing interest in the application of additive manufacturing in tissue engineering, the fabrication of customized scaffolds for the regeneration of missing tissue via three-dimensional (3D) printing has become especially promising. Amongst the work on the regeneration of many important organs, liver regeneration is particularly interesting because liver diseases are increasingly prevalent in many countries around the world, resulting in a greater need for liver transplantation. The generation of hexagonal scaffolds for the regeneration of liver lobules is highly demanding, but their 3D structure has been proved difficult to reproduce by traditional fabrication methods. In this work, various hexagonal scaffolds are developed for liver lobule regeneration via 3D printing using novel biodegradable polymeric materials, including poly(glycerol sebacate) acrylate and poly(ethylene glycol) diacrylate. Through fine-tuning of printing parameters, a series of hexagonal scaffolds were designed and printed to mimic liver lobule units. The scaffolds were printed with various structures together with varying surface areas and 3D structures to enhance cell seeding density and diffusivity of the culture medium. Analysis of cell metabolic activities showed that the high-diffusion staircase (HDS) scaffold could support potential differences in cell proliferation rate. Furthermore, the HDS scaffolds composed of different copolymers were cultured with cells for up to 16 days to investigate the relationship between physical properties and hepatocyte proliferation. The results indicate that the combination of the high flexibility 3D printing with biodegradable, photocurable copolymers shows great promise for the regeneration of 3D liver lobules.


Assuntos
Luz , Regeneração Hepática/fisiologia , Fígado/fisiologia , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Proliferação de Células , Sobrevivência Celular , Decanoatos/química , Difusão , Glicerol/análogos & derivados , Glicerol/química , Células Hep G2 , Humanos , Camundongos , Polietilenoglicóis/química , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...