Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 5781, 2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37031224

RESUMO

Graphene nanoribbons have many extraordinary electrical properties and are the candidates for semiconductor industry. In this research, we propose a design of Coved GNRs with periodic structure ranged from 4 to 8 nm or more, of which the size is within practical feature sizes by advanced lithography tools. The carrier transport properties of Coved GNRs with the periodic coved shape are designed to break the localized electronic state and reducing electron-phonon scattering. In this way, the mobility of Coved GNRs can be enhanced by orders compared with the zigzag GNRs in same width. Moreover, in contrast to occasional zero bandgap transition of armchair and zigzag GNRs without precision control in atomic level, the Coved GNRs with periodic edge structures can exclude the zero bandgap conditions, which makes practical the mass production process. The designed Coved-GNRs is fabricated over the Germanium (110) substrate where the graphene can be prepared in the single-crystalline and single-oriented formants and the edge of GNRs is later repaired under "balanced condition growth" and we demonstrate that the propose coved structures are compatible to current fabrication facility.

2.
J Leukoc Biol ; 114(2): 180-186, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37075217

RESUMO

Chitin is a highly abundant N-acetylglucosamine polysaccharide that has been linked to immune responses in the context of fungal infections and allergic asthma, especially to T helper 2 immune responses. Unfortunately, due to the frequent use of crude chitin preparations of unknown purity and degree of polymerization, there is still great uncertainty about how chitin activates different parts of the human immune system. We recently identified chitin oligomers of 6 N-acetylglucosamine units as the smallest immunologically active chitin motif and the innate immune receptor TLR2 as a primary chitin sensor on human and murine myeloid cells, but the response of further immune cells (e.g. lymphoid cells) to oligomeric chitin has not been investigated. Our analysis of primary human immune cells now shows that chitin oligomers activate immune responses of both innate and adaptive lymphocytes: notably, chitin oligomers activated natural killer cells but not B lymphocytes. Moreover, chitin oligomers induced maturation of dendritic cells and enabled potent CD8+ T-cell recall responses. Our results suggest that chitin oligomers not only trigger immediate innate responses in a limited range of myeloid cells but also exert critical activities across the entire human immune system. This highlights chitin oligomer immune activation as an interesting and broadly applicable potential target for both adjuvant development and therapeutic interference in chitin-mediated pathologies.


Assuntos
Acetilglucosamina , Quitina , Humanos , Animais , Camundongos , Quitina/farmacologia , Células Matadoras Naturais , Linfócitos T CD8-Positivos , Apresentação de Antígeno , Imunidade Inata
3.
Anticancer Res ; 42(10): 4753-4762, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36191984

RESUMO

BACKGROUND/AIM: The transcription factor Kruppel-like factor 2 (KLF2) is thought to act as a tumor suppressor. However, its expression and function in renal angiomyolipomas (AMLs) remains unclear. This study aimed to investigate the expression and function of KLF2 in AML cells. MATERIALS AND METHODS: KLF2 was detected in AML tissues by immunohistochemistry and quantitative real-time polymerase chain reaction. The associations between KLF2 expression levels and clinicopathological features of patients with AMLs were analyzed. To explore its function in AMLs, KLF2 was over-expressed, and cell proliferation was assessed using cell counting kit-8 assay. Through Gene set enrichment analysis (GSEA) of RNA sequencing data, the signaling pathways regulated by KLF2 were predicted. The KLF2-regulated signaling pathway was validated by western blotting. RESULTS: KLF2 expression was dramatically suppressed in clinical samples of patients with AMLs. Low KLF2 expression was significantly associated with a larger tumor size and higher incidence of tumor hemorrhage (p=0.008 and p=0.009, respectively). In addition, KLF2 overexpression markedly inhibited SV7 and UMB cell survival and proliferation. GSEA and western blotting analysis revealed that KLF2 down-regulated the IL-6/JAK/STAT3 signaling pathway. CONCLUSION: Collectively, KLF2 mediated AML cell growth by regulating the IL-6/JAK/STAT3 signaling pathway. These results indicate that KLF2 plays an important role in AML progression and provide novel insights into diagnostic and therapeutic biomarkers for AMLs.


Assuntos
Angiomiolipoma , Neoplasias Renais , Fatores de Transcrição Kruppel-Like , Angiomiolipoma/genética , Proliferação de Células/genética , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Neoplasias Renais/genética , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
4.
World J Oncol ; 13(3): 107-116, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35837323

RESUMO

Background: Clooxygenase-2 (COX-2) expression is overexpressed in human prostate cancer, and aberrant methylation of the COX-2 promoter has also been elucidated. However, how the methylation of CpG islands at COX-2 regulates its expression in prostate cancer is still unclear. We will determine the methylated 5' CpG island of the COX-2 gene and its role in the expression of COX-2 in prostate androgen-dependent and androgen-independent cancer cells, LNCaP and DU145. Methods: We used western blotting and quantitative reverse transcription polymerase chain reaction (qRT-PCR) to confirm the COX-2 expression in prostate cancer cell lines, including LNCaP (androgen-dependent) and DU145 (androgen-independent) cells. To investigate whether the COX-2 expression was regulated by the methylation status of the 5' CpG island, we treated LNCaP and DU145 cells with the DNA methylation inhibitor, 5-aza-2'-deoxycytidine, and determined COX-2 expression in the treated/untreated cells by western blotting and qRT-PCR. Subsequently, bisulfite sequencing was performed to study the methylation sites in the treated/untreated cells. The effects of 5-aza-2'-deoxycytidine to cell proliferation, cell migration and cell cycle process in DU145 and LNCaP cells were determined using Cell Counting Kit-8 (CCK-8) assay, transwell assay and flow cytometry, respectively. Results: The results revealed that the expression of COX-2 in androgen-dependent LNCaP cells was 5.44-fold (in protein level) and 2.46-fold (in mRNA level) higher than that in androgen-independent DU145 cells. After 5-aza-2'-deoxycytidine treatment, COX-2 expression in DU145 cells was elevated significantly, but no change was found in LNCaP cells. The A and C regions of the COX-2 CpG island exhibited reduced methylation along with that an increased expression of COX-2 was noted in DU145 cell after 5-aza-2'-deoxycytidine treatment. Also, the treatment with 5-aza-2'-deoxycytidine inhibited cell proliferation, cell migration and influenced the cell cycle progression in both DU145 and LNCaP cells. Conclusions: Our results reveal that androgen receptor (AR)-dependent/independent prostate cancer cell lines exhibit different regulation of methylation in COX-2 that regulate its expression. Additionally, 5-aza-2'-deoxycytidine treatment of DU145 and LNCaP cells inhibits their ability of tumor progression.

5.
Adv Mater ; 34(3): e2104608, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34738258

RESUMO

Solid-state transistor sensors that can detect biomolecules in real time are highly attractive for emerging bioanalytical applications. However, combining upscalable manufacturing with the required performance remains challenging. Here, an alternative biosensor transistor concept is developed, which relies on a solution-processed In2 O3 /ZnO semiconducting heterojunction featuring a geometrically engineered tri-channel architecture for the rapid, real-time detection of important biomolecules. The sensor combines a high electron mobility channel, attributed to the electronic properties of the In2 O3 /ZnO heterointerface, in close proximity to a sensing surface featuring tethered analyte receptors. The unusual tri-channel design enables strong coupling between the buried electron channel and electrostatic perturbations occurring during receptor-analyte interactions allowing for robust, real-time detection of biomolecules down to attomolar (am) concentrations. The experimental findings are corroborated by extensive device simulations, highlighting the unique advantages of the heterojunction tri-channel design. By functionalizing the surface of the geometrically engineered channel with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody receptors, real-time detection of the SARS-CoV-2 spike S1 protein down to am concentrations is demonstrated in under 2 min in physiological relevant conditions.


Assuntos
Técnicas Biossensoriais/instrumentação , COVID-19/virologia , SARS-CoV-2/química , Glicoproteína da Espícula de Coronavírus/análise , Transistores Eletrônicos , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Imobilizados , Anticorpos Antivirais , Bioengenharia , COVID-19/sangue , COVID-19/diagnóstico , Teste para COVID-19/instrumentação , Teste para COVID-19/métodos , Simulação por Computador , Sistemas Computacionais , DNA/análise , Desenho de Equipamento , Humanos , Índio , Microtecnologia , Estudo de Prova de Conceito , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Óxido de Zinco
6.
J Exp Med ; 218(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34554188

RESUMO

Activity of the NLRP3 inflammasome, a critical mediator of inflammation, is controlled by accessory proteins, posttranslational modifications, cellular localization, and oligomerization. How these factors relate is unclear. We show that a well-established drug target, Bruton's tyrosine kinase (BTK), affects several levels of NLRP3 regulation. BTK directly interacts with NLRP3 in immune cells and phosphorylates four conserved tyrosine residues upon inflammasome activation, in vitro and in vivo. Furthermore, BTK promotes NLRP3 relocalization, oligomerization, ASC polymerization, and full inflammasome assembly, probably by charge neutralization, upon modification of a polybasic linker known to direct NLRP3 Golgi association and inflammasome nucleation. As NLRP3 tyrosine modification by BTK also positively regulates IL-1ß release, we propose BTK as a multifunctional positive regulator of NLRP3 regulation and BTK phosphorylation of NLRP3 as a novel and therapeutically tractable step in the control of inflammation.


Assuntos
Tirosina Quinase da Agamaglobulinemia/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Tirosina/metabolismo , Animais , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
7.
Exp Ther Med ; 22(5): 1204, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34584549

RESUMO

The present study investigated the role of tubulin polymerization promoting protein (TPPP) in the regulation of bladder cancer (BC) cell proliferation and migration, in addition to the association between TPPP gene copy number amplification and clinicopathological characteristics of BC. TPPP gene amplification was measured in human BC epithelial cells and samples obtained from 52 patients with BC via fluorescence in situ hybridization. TPPP gain was defined as mean TPPP copy number >2.2 per nucleus (cutoff). The neutrophil-to-lymphocyte ratio (NLR) was also obtained from the preoperative data of the patients. For in vitro assays, BC cell lines were transfected with either TPPP small interfering RNAs or scrambled control, following which cell proliferation and migration were determined using Cell Counting Kit-8 and Transwell migration assays, respectively. The percentage of cells with TPPP copy number amplification in the four BC epithelial cell lines (MGH-U1, -U1R, -U3, -U4) examined (86.0-100.0%) was found to be higher compared with that in the normal human uroepithelial cell lines (3.0 and 9.0%). Patients were divided into one- (1.9%), two- (55.8%), three- (7.7%), four- (26.9%) and five-copy (7.7%) types. Results calculated using Fisher's exact test indicated that the gain of TPPP in patients with BC associated significantly with age (P<0.05), advanced histological grade (P<0.001), tumor stage (P<0.05), histological type (P<0.001) and NLR (P<0.05). In MGH-U1R and MGH-U4 cells, cell proliferation and migration were revealed to be significantly lower following TPPP knockdown compared with those in cells transfected with the scrambled control. In conclusion, findings from the present study suggest that TPPP is important for cell proliferation, cell migration and BC progression, such that TPPP copy number assessment would be advised for preoperative urine cytology for urothelial neoplasia diagnosis.

8.
ACS Appl Mater Interfaces ; 13(34): 41190-41199, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34470104

RESUMO

Directed self-assembly (DSA) of block copolymers is one of the most promising patterning techniques for patterning sub-10 nm features. However, at such small feature sizes, it is becoming increasingly difficult to fabricate the guiding pattern for the DSA process, and it is necessary to explore alternative guiding methods for DSA to achieve long-range ordered alignment. Here, we report the self-aligned assembly of a triblock copolymer, poly(2-vinylpyridine)-b-polystyrene-b-poly(2-vinylpyridine) (P2VP-b-PS-b-P2VP) on neutral graphene nanoribbons with the gap consisting of a P2VP-preferential silicon oxide (SiO2) substrate via solvent vapor annealing. The assembled P2VP-b-PS-b-P2VP demonstrated long-range, one-dimensional alignment on the graphene substrate in a direction perpendicular to the boundary of the graphene and substrate with a half-pitch size of 8 nm, which greatly alleviates the lithography resolution required for traditional chemoepitaxy DSA. A wide processing window is demonstrated with the gap between graphene stripes varying from 10 to 100 nm, overcoming the restriction on widths of guiding patterns to have commensurate domain spacing. When the gap was reduced to 10 nm, P2VP-b-PS-b-P2VP formed a straight-line pattern on both the graphene and the substrate. Monte Carlo simulations showed that the self-aligned assembly of the triblock copolymer on the graphene nanoribbons is guided at the boundary of parallel and perpendicular lamellae on graphene and SiO2, respectively. Simulations also indicate that the swelling of a system allows for rapid rearrangement of chains and quickly anneal any misaligned grains and defects. The effect of the interaction strength between SiO2 and P2VP on the self-assembly is systematically investigated in simulations.

9.
Nat Commun ; 12(1): 4460, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294699

RESUMO

Field-induced ionic motions in all-inorganic CsPbBr3 perovskite quantum dots (QDs) strongly dictate not only their electro-optical characteristics but also the ultimate optoelectronic device performance. Here, we show that the functionality of a single Ag/CsPbBr3/ITO device can be actively switched on a sub-millisecond scale from a resistive random-access memory (RRAM) to a light-emitting electrochemical cell (LEC), or vice versa, by simply modulating its bias polarity. We then realize for the first time a fast, all-perovskite light-emitting memory (LEM) operating at 5 kHz by pairing such two identical devices in series, in which one functions as an RRAM to electrically read the encoded data while the other simultaneously as an LEC for a parallel, non-contact optical reading. We further show that the digital status of the LEM can be perceived in real time from its emission color. Our work opens up a completely new horizon for more advanced all-inorganic perovskite optoelectronic technologies.

10.
J Cell Sci ; 133(23)2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273068

RESUMO

The NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome is a fascinating cellular machinery endowed with the capacity for rapid proteolytic processing of the pro-inflammatory cytokine IL-1ß and the cell death effector gasdermin D (GSDMD). Although its activity is essential to fight infection and support tissue homeostasis, the inflammasome complex, which consists of the danger sensor NLRP3, the adaptor apoptosis-associated speck-like protein containing a CARD (ASC; also known as PYCARD), caspase-1 and probably other regulatory proteins, also bears considerable potential for detrimental inflammation, as observed in human conditions such as gout, heart attack, stroke and Alzheimer's disease. Thus, multi-layered regulatory networks are required to ensure the fine balance between rapid responsiveness versus erroneous activation (sufficient and temporally restricted versus excessive and chronic activity) of the inflammasome. These involve multiple activation, secretion and cell death pathways, as well as modulation of the subcellular localization of NLRP3, and its structure and activity, owing to post-translational modification by other cellular proteins. Here, we discuss the exciting progress that has recently been made in deciphering the regulation of the NLRP3 inflammasome. Additionally, we highlight open questions and describe areas of research that warrant further exploration to obtain a more comprehensive molecular and cellular understanding of the NLRP3 inflammasome.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Apoptose , Caspase 1 , Citocinas , Humanos , Inflamação/genética , Interleucina-1beta , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética
11.
Nat Commun ; 11(1): 4151, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32814775

RESUMO

Directed self-assembly of block copolymers (BCPs) enables nanofabrication at sub-10 nm dimensions, beyond the resolution of conventional lithography. However, directing the position, orientation, and long-range lateral order of BCP domains to produce technologically-useful patterns is a challenge. Here, we present a promising approach to direct assembly using spatial boundaries between planar, low-resolution regions on a surface with different composition. Pairs of boundaries are formed at the edges of isolated stripes on a background substrate. Vertical lamellae nucleate at and are pinned by chemical contrast at each stripe/substrate boundary, align parallel to boundaries, selectively propagate from boundaries into stripe interiors (whereas horizontal lamellae form on the background), and register to wide stripes to multiply the feature density. Ordered BCP line arrays with half-pitch of 6.4 nm are demonstrated on stripes >80 nm wide. Boundary-directed epitaxy provides an attractive path towards assembling, creating, and lithographically defining materials on sub-10 nm scales.

12.
Nat Commun ; 11(1): 3118, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561743

RESUMO

Low-cost flexible microwave circuits with compact size and light weight are highly desirable for flexible wireless communication and other miniaturized microwave systems. However, the prevalent studies on flexible microwave electronics have only focused on individual flexible microwave elements such as transistors, inductors, capacitors, and transmission lines. Thinning down supporting substrate of rigid chip-based monolithic microwave integrated circuits has been the only approach toward flexible microwave integrated circuits. Here, we report a flexible microwave integrated circuit strategy integrating membrane AlGaN/GaN high electron mobility transistor with passive impedance matching networks on cellulose nanofibril paper. The strategy enables a heterogeneously integrated and, to our knowledge, the first flexible microwave amplifier that can output 10 mW power beyond 5 GHz and can also be easily disposed of due to the use of cellulose nanofibril paper as the circuit substrate. The demonstration represents a critical step forward in realizing flexible wireless communication devices.

13.
Adv Mater ; 32(22): e2000801, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32319153

RESUMO

The emergence of memristive behavior in amorphous-crystalline 2D oxide heterostructures, which are synthesized by atomic layer deposition (ALD) of a few-nanometer amorphous Al2 O3 layers onto atomically thin single-crystalline ZnO nanosheets, is demonstrated. The conduction mechanism is identified based on classic oxygen vacancy conductive channels. ZnO nanosheets provide a 2D host for oxygen vacancies, while the amorphous Al2 O3 facilitates the generation and stabilization of the oxygen vacancies. The conduction mechanism in the high-resistance state follows Poole-Frenkel emission, and in the the low-resistance state is fitted by the Mott-Gurney law. From the slope of the fitting curve, the mobility in the low-resistance state is estimated to be ≈2400 cm2 V-1 s-1 , which is the highest value reported in semiconductor oxides. When annealed at high temperature to eliminate oxygen vacancies, Al is doped into the ZnO nanosheet, and the memristive behavior disappears, further confirming the oxygen vacancies as being responsible for the memristive behavior. The 2D heterointerface offers opportunities for new design of high-performance memristor devices.

14.
Nano Lett ; 19(8): 5327-5334, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31314538

RESUMO

Silicon (Si) nanostructures are widely used in microelectronics and nanotechnology. Brittle to ductile transition in nanoscale Si is of great scientific and technological interest but this phenomenon and its underlying mechanism remain elusive. By conducting in situ temperature-controlled nanomechanical testing inside a transmission electron microscope (TEM), here we show that the crystalline Si nanowires under tension are brittle at room temperature but exhibit ductile behavior with dislocation-mediated plasticity at elevated temperatures. We find that reducing the nanowire diameter promotes the dislocation-mediated responses, as shown by 78 Si nanowires tested between room temperature and 600 K. In situ high-resolution TEM imaging and atomistic reaction pathway modeling reveal that the unconventional 1/2⟨110⟩{001} dislocations become highly active with increasing temperature and thus play a critical role in the formation of deformation bands, leading to transition from brittle fracture to dislocation-mediated failure in Si nanowires at elevated temperatures. This study provides quantitative characterization and mechanistic insight for the brittle to ductile transition in Si nanostructures.

15.
Nat Commun ; 10(1): 2004, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31043601

RESUMO

Although hydrogen embrittlement has been observed and extensively studied in a wide variety of metals and alloys, there still exist controversies over the underlying mechanisms and a fundamental understanding of hydrogen embrittlement in nanostructures is almost non-existent. Here we use metallic nanowires (NWs) as a platform to study hydrogen embrittlement in nanostructures where deformation and failure are dominated by dislocation nucleation. Based on quantitative in-situ transmission electron microscopy nanomechanical testing and molecular dynamics simulations, we report enhanced yield strength and a transition in failure mechanism from distributed plasticity to localized necking in penta-twinned Ag NWs due to the presence of surface-adsorbed hydrogen. In-situ stress relaxation experiments and simulations reveal that the observed embrittlement in metallic nanowires is governed by the hydrogen-induced suppression of dislocation nucleation at the free surface of NWs.

16.
Front Immunol ; 9: 2761, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30559741

RESUMO

LC3-associated phagocytosis (LAP) is an emerging non-canonical autophagy process that bridges signaling from pattern-recognition receptors (PRRs) to autophagic machinery. LAP formation results in incorporation of lipidated LC3 into phagosomal membrane (termed LAPosome). Increasing evidence reveals that LAP functions as an innate defense mechanism against fungal pathogens. However, the molecular mechanism involved and the consequence of LAP in regulating anti-fungal immune response remain largely unexplored. Here we show that Histoplasma capsulatum is taken into LAPosome upon phagocytosis by macrophages. Interaction of H. capsulatum with Dectin-1 activates Syk and triggers subsequent NADPH oxidase-mediated reactive oxygen species (ROS) response that is involved in LAP induction. Inhibiting LAP induction by silencing LC3α/ß or treatment with ROS inhibitor impairs the activation of MAPKs-AP-1 pathway, thereby reduces macrophage proinflammatory cytokine response to H. capsulatum. Additionally, we unravel the importance of NLRX1 in fungus-induced LAP. NLRX1 facilitates LAP by interacting with TUFM which associates with autophagic proteins ATG5-ATG12 for LAPosome formation. Macrophages from Nlrx1-/- mice or TUFM-silenced cells exhibit reduced LAP induction and LAP-mediated MAPKs-AP-1 activation for cytokine response to H. capsulatum. Furthermore, inhibiting ROS production in Nlrx1-/- macrophages almost completely abolishes H. capsulatum-induced LC3 conversion, indicating that both Dectin-1/Syk/ROS-dependent pathway and NLRX1-TUFM complex-dependent pathway collaboratively contribute to LAP induction. Our findings reveal new pathways underlying LAP induction by H. capsulatum for macrophage cytokine response.


Assuntos
Citocinas/metabolismo , Histoplasma/imunologia , Macrófagos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Mitocondriais/metabolismo , Fagocitose/fisiologia , Animais , Autofagia/imunologia , Autofagia/fisiologia , Proteína 12 Relacionada à Autofagia/imunologia , Proteína 12 Relacionada à Autofagia/metabolismo , Proteína 5 Relacionada à Autofagia/imunologia , Proteína 5 Relacionada à Autofagia/metabolismo , Citocinas/imunologia , Histoplasmose/imunologia , Histoplasmose/metabolismo , Histoplasmose/microbiologia , Lectinas Tipo C/imunologia , Lectinas Tipo C/metabolismo , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/imunologia , Proteínas Mitocondriais/imunologia , Proteínas Quinases Ativadas por Mitógeno/imunologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NADPH Oxidases/imunologia , NADPH Oxidases/metabolismo , Fagocitose/imunologia , Fagossomos/imunologia , Fagossomos/metabolismo , Fagossomos/microbiologia , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição AP-1/imunologia , Fator de Transcrição AP-1/metabolismo
17.
Front Immunol ; 8: 1177, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29018444

RESUMO

Influenza A virus (IAV) infection causes significant morbidity and mortality worldwide. Matrix metalloproteinase-9 (MMP-9) degrades extracellular matrix and is involved in the pathology of influenza. It has been reported that MMP-9 mediates neutrophil migration in IAV infection. Whether alveolar macrophages, the first immune cells that encounter IAV, produce MMP-9, and the mechanism of its regulation have never been investigated. As Toll-like receptor 7 (TLR7) is one of the receptors in innate immune cells that recognize IAV, we used TLR7 agonists and IAV to stimulate alveolar macrophage MH-S cells, primary macrophages, and bone marrow neutrophils. Results showed that MMP-9 expression in macrophages is inducible by TLR7 agonists and IAV, yet, MMP-9 production by neutrophils is not inducible by either one of them. We hypothesized that MMP-9 production in macrophages is mediated through TLR7-NF-κB pathway and used microarray to analyze TLR7 agonist-induced NF-κB-related genes. Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1), a positive regulator of NF-κB, is amongst the top highly induced genes. By use of MALT1 inhibitor (z-VRPR-fmk) and alveolar macrophages from MALT1-deficient mice, we found that MMP-9 production is MALT1-dependent. While MALT1 can act as a paracaspase in lymphocytes through degrading various signaling proteins, we discovered that MALT1 functions to reduce a negative regulator of NF-κB, cylindromatosis (CYLD), in alveolar macrophages. IAV-induced MMP-9, TNF, and IL-6 in lungs of MALT1-deficient mice are significantly lower than in wild-type mice after intratracheal infection. MALT1-deficient mice also have less body weight loss and longer survival after infection. Taken together, we demonstrated a novel role of MALT1 in regulating alveolar macrophage MMP-9 production whose presence exacerbates the severity of influenza.

18.
Sci Adv ; 3(7): e1602783, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28695202

RESUMO

Miniaturization of optoelectronic devices offers tremendous performance gain. As the volume of photoactive material decreases, optoelectronic performance improves, including the operation speed, the signal-to-noise ratio, and the internal quantum efficiency. Over the past decades, researchers have managed to reduce the volume of photoactive materials in solar cells and photodetectors by orders of magnitude. However, two issues arise when one continues to thin down the photoactive layers to the nanometer scale (for example, <50 nm). First, light-matter interaction becomes weak, resulting in incomplete photon absorption and low quantum efficiency. Second, it is difficult to obtain ultrathin materials with single-crystalline quality. We introduce a method to overcome these two challenges simultaneously. It uses conventional bulk semiconductor wafers, such as Si, Ge, and GaAs, to realize single-crystalline films on foreign substrates that are designed for enhanced light-matter interaction. We use a high-yield and high-throughput method to demonstrate nanometer-thin photodetectors with significantly enhanced light absorption based on nanocavity interference mechanism. These single-crystalline nanomembrane photodetectors also exhibit unique optoelectronic properties, such as the strong field effect and spectral selectivity.

19.
Sci Rep ; 7(1): 6360, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28743988

RESUMO

Single crystal semiconductor nanomembranes (NM) are important in various applications such as heterogeneous integration and flexible devices. This paper reports the fabrication of AlGaN/GaN NMs and NM high electron mobility transistors (HEMT). Electrochemical etching is used to slice off single-crystalline AlGaN/GaN layers while preserving their microstructural quality. A double heterostructure design with a symmetric strain profile is employed to ensure minimal residual strain in freestanding NMs after release. The mobility of the two-dimensional electron gas (2DEG), formed by the AlGaN/GaN heterostructure, is noticeably superior to previously reported values of many other NMs. AlGaN/GaN nanomembrane HEMTs are fabricated on SiO2 and flexible polymeric substrates. Excellent electrical characteristics, including a high ON/OFF ratio and transconductance, suggest that III-Nitrides nanomembranes are capable of supporting high performance applications.

20.
Macromol Rapid Commun ; 38(18)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28749034

RESUMO

The direct self-assembly of cylinder-forming poly(styrene-block-methyl-methacrylate) (PS-b-PMMA) block copolymer is successfully assembled into two orientations, according to the underlying guiding pattern in different areas. Lying-down and perpendicular cylinders are formed, respectively, depending on the design of chemical pattern: sparse line/space pattern or hexagonal dot array. The first chemical pattern composed of prepatterned cross-linked polystyrene (XPS) line/space structure has a period (LS ) equal to twice the intercylinder period of the block copolymer (L0 ). The PS-b-PMMA thin film on the prepared chemical template after thermal annealing forms a lying-down cylinder morphology when the width of the PS strips is less than the width of PS block in the PS-b-PMMA block copolymer. The morphology is only applicable at the discrete thickness of the PS-b-PMMA film. In addition to forming the lying-down cylinders directly on the XPS guiding pattern, the cylinder-forming block copolymer can also be assembled in a perpendicular way on the second guiding pattern (the hexagonal dot array). The block copolymer films are registered into two orientations in a single directed self-assembly process. The features of the assembled patterns are successfully transferred down to the silicon oxide substrate.


Assuntos
Técnicas de Química Analítica/métodos , Nanoestruturas/química , Polímeros/síntese química , Metacrilatos/química , Polímeros/química , Poliestirenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...