Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 109(8): 2836-41, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22308444

RESUMO

Airborne particles play critical roles in air quality, health effects, visibility, and climate. Secondary organic aerosols (SOA) formed from oxidation of organic gases such as α-pinene account for a significant portion of total airborne particle mass. Current atmospheric models typically incorporate the assumption that SOA mass is a liquid into which semivolatile organic compounds undergo instantaneous equilibrium partitioning to grow the particles into the size range important for light scattering and cloud condensation nuclei activity. We report studies of particles from the oxidation of α-pinene by ozone and NO(3) radicals at room temperature. SOA is primarily formed from low-volatility ozonolysis products, with a small contribution from higher volatility organic nitrates from the NO(3) reaction. Contrary to expectations, the particulate nitrate concentration is not consistent with equilibrium partitioning between the gas phase and a liquid particle. Rather the fraction of organic nitrates in the particles is only explained by irreversible, kinetically determined uptake of the nitrates on existing particles, with an uptake coefficient that is 1.6% of that for the ozonolysis products. If the nonequilibrium particle formation and growth observed in this atmospherically important system is a general phenomenon in the atmosphere, aerosol models may need to be reformulated. The reformulation of aerosol models could impact the predicted evolution of SOA in the atmosphere both outdoors and indoors, its role in heterogeneous chemistry, its projected impacts on air quality, visibility, and climate, and hence the development of reliable control strategies.


Assuntos
Aerossóis/análise , Atmosfera/química , Compostos Orgânicos/análise , Monoterpenos Bicíclicos , Monoterpenos/análise , Nitratos/análise , Óxido Nitroso/análise , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Proc Natl Acad Sci U S A ; 107(15): 6705-10, 2010 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-20176970

RESUMO

Secondary organic aerosol (SOA) comprises a significant portion of atmospheric particular matter. The impact of particular matter on both human health and global climate has long been recognized. Despite its importance, there are still many unanswered questions regarding the formation and evolution of SOA in the atmosphere. This study uses a modeling approach to understand the preferred partitioning behavior of SOA species into aqueous or organic condensed phases. More specifically, this work uses statistical analyses of approximately 24,000 data values for each variable from a state of the art 3D airshed model. Spatial and temporal distributions of fractions of SOA residing in the aqueous phase (fAQ) in the South Coast Air Basin of California are presented. Typical values of fAQ within the basin near the surface range from 5 to 80%. Results show that the likelihood of large fAQ values is inversely proportional to the total SOA loading. Analysis of various meteorological parameters indicates that large fAQ values are predicted because modeled aqueous-phase SOA formation is less sensitive than that of organic-phase SOA to atmospheric conditions that are not conducive to SOA formation. There is a diurnal variation of fAQ near the surface: It tends to be larger during daytime hours than during nighttime hours. Results also indicate that the largest fAQ values are simulated in layers above ground level at night. In summary, one must consider SOA in both organic and aqueous phases for proper regional and global SOA budget estimation.


Assuntos
Aerossóis , Química Orgânica/métodos , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Atmosfera , California , Cidades , Simulação por Computador , Geografia , Modelos Estatísticos , Material Particulado , Software , Solventes , Fatores de Tempo , Volatilização
3.
Proc Natl Acad Sci U S A ; 106(33): 13647-54, 2009 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-19620710

RESUMO

Gaseous HCl generated from a variety of sources is ubiquitous in both outdoor and indoor air. Oxides of nitrogen (NO(y)) are also globally distributed, because NO formed in combustion processes is oxidized to NO(2), HNO(3), N(2)O(5) and a variety of other nitrogen oxides during transport. Deposition of HCl and NO(y) onto surfaces is commonly regarded as providing permanent removal mechanisms. However, we show here a new surface-mediated coupling of nitrogen oxide and halogen activation cycles in which uptake of gaseous NO(2) or N(2)O(5) on solid substrates generates adsorbed intermediates that react with HCl to generate gaseous nitrosyl chloride (ClNO) and nitryl chloride (ClNO(2)), respectively. These are potentially harmful gases that photolyze to form highly reactive chlorine atoms. The reactions are shown both experimentally and theoretically to be enhanced by water, a surprising result given the availability of competing hydrolysis reaction pathways. Airshed modeling incorporating HCl generated from sea salt shows that in coastal urban regions, this heterogeneous chemistry increases surface-level ozone, a criteria air pollutant, greenhouse gas and source of atmospheric oxidants. In addition, it may contribute to recently measured high levels of ClNO(2) in the polluted coastal marine boundary layer. This work also suggests the potential for chlorine atom chemistry to occur indoors where significant concentrations of oxides of nitrogen and HCl coexist.


Assuntos
Cloro/química , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Gases , Ácido Clorídrico/química , Modelos Químicos , Conformação Molecular , Nitrogênio/química , Óxidos de Nitrogênio/química , Oxidantes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA