Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 39(35): 6817-6828, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31235647

RESUMO

Normal brain function requires proper targeting of synaptic-vesicle (SV) and active-zone components for presynaptic assembly and function. Whether and how synaptogenic signals (e.g., adhesion) at axo-dendritic contact sites promote axonal transport of presynaptic components for synapse formation, however, remain unclear. In this study, we show that Borderless (Bdl), a member of the conserved IgSF9-family trans-synaptic cell adhesion molecules, plays a novel and specific role in regulating axonal transport of SV components. Loss of bdl disrupts axonal transport of SV components in photoreceptor R8 axons, but does not affect the transport of mitochondria. Genetic mosaic analysis, transgene rescue and cell-type-specific knockdown indicate that Bdl is required both presynaptically and postsynaptically for delivering SV components in R8 axons. Consistent with a role for Bdl in R8 axons, loss of bdl causes a failure of R8-dependent phototaxis response to green light. bdl interacts genetically with imac encoding for a member of the UNC-104/Imac/KIF1A-family motor proteins, and is required for proper localization of Imac in R8 presynaptic terminals. Our results support a model in which Bdl mediates specific axo-dendritic interactions in a homophilic manner, which upregulates the Imac motor in promoting axonal transport of SV components for R8 presynaptic assembly and function.SIGNIFICANCE STATEMENT Whether and how synaptogenic adhesion at axo-dendritic contact sites regulates axonal transport of presynaptic components remain unknown. Here we show for the first time that a trans-synaptic adhesion molecule mediates specific interactions at axo-dendritic contact sites, which is required for upregulating the UNC-104/Imac/KIF1A motor in promoting axonal transport of synaptic-vesicle components for presynaptic assembly and function.


Assuntos
Transporte Axonal/fisiologia , Visão de Cores/fisiologia , Proteínas de Drosophila/metabolismo , Proteínas de Membrana/metabolismo , Terminações Pré-Sinápticas/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Animais Geneticamente Modificados , Axônios/metabolismo , Dendritos/metabolismo , Drosophila , Proteínas de Drosophila/genética , Proteínas de Membrana/genética , Mitocôndrias/metabolismo , Sinapses/metabolismo
2.
Mol Brain ; 12(1): 1, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30606245

RESUMO

Natural aggressiveness is commonly observed in all animal species, and is displayed frequently when animals compete for food, territory and mating. Aggression is an innate behaviour, and is influenced by both environmental and genetic factors. However, the genetics of aggression remains largely unclear. In this study, we identify the peacefulness (pfs) gene as a novel player in the control of male-male aggression in Drosophila. Mutations in pfs decreased intermale aggressiveness, but did not affect locomotor activity, olfactory avoidance response and sexual behaviours. pfs encodes for the evolutionarily conserved molybdenum cofactor (MoCo) synthesis 1 protein (Mocs1), which catalyzes the first step in the MoCo biosynthesis pathway. Neuronal-specific knockdown of pfs decreased aggressiveness. By contrast, overexpression of pfs greatly increased aggressiveness. Knocking down Cinnamon (Cin) catalyzing the final step in the MoCo synthesis pathway, caused a pfs-like aggression phenotype. In humans, inhibition of MoCo-dependent enzymes displays anti-aggressive effects. Thus, the control of aggression by Pfs-dependent MoCo pathways may be conserved throughout evolution.


Assuntos
Agressão/fisiologia , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Genes de Insetos , Proteínas Nucleares/genética , Animais , Aprendizagem da Esquiva , Encéfalo/metabolismo , Carbono-Carbono Liases , Coenzimas/biossíntese , Proteínas de Drosophila/metabolismo , Técnicas de Silenciamento de Genes , Masculino , Metaloproteínas/biossíntese , Cofatores de Molibdênio , Atividade Motora , Mutagênese Insercional/genética , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Pteridinas , Comportamento Sexual Animal , Olfato/fisiologia
3.
Mol Brain ; 10(1): 17, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28535795

RESUMO

Proper recognition between axons and glial processes is required for the establishment of axon ensheathment in the developing nervous system. Recent studies have begun to reveal molecular events underlying developmental control of axon-glia recognition. In our previous work, we showed that the transmembrane protein Borderless (Bdl) is specifically expressed in wrapping glia (WG), and is required for the extension of glial processes and the ensheathment of photoreceptor axons in the developing Drosophila visual system. The exact mechanism by which Bdl mediates axon-glia recognition, however, remains unknown. Here, we present evidence showing that Bdl interacts with the Ig transmembrane protein Turtle (Tutl). Tutl is specifically expressed in photoreceptor axons. Loss of tutl in photoreceptors, like loss of bdl in WG, disrupts glial extension and axon ensheatment. Epistasis analysis shows that Tutl interacts genetically with Bdl. Tutl interacts with Bdl in trans in cultured cells. We propose that Tutl interacts with Bdl in mediating axon-glia recognition for WG extension and axon ensheathment.


Assuntos
Axônios/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Imunoglobulinas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/metabolismo , Animais , Células Cultivadas , Drosophila melanogaster/crescimento & desenvolvimento , Epistasia Genética , Fator 8 de Crescimento de Fibroblasto/metabolismo , Técnicas de Silenciamento de Genes , Larva/crescimento & desenvolvimento , Larva/metabolismo , Lobo Óptico de Animais não Mamíferos/metabolismo , Transdução de Sinais , Vias Visuais/crescimento & desenvolvimento , Vias Visuais/metabolismo
4.
Proc Natl Acad Sci U S A ; 111(31): 11383-8, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25049408

RESUMO

Semaphorin family proteins are well-known axon guidance ligands. Recent studies indicate that certain transmembrane Semaphorins can also function as guidance receptors to mediate axon-axon attraction or repulsion. The mechanisms by which Semaphorin reverse signaling modulates axon-surface affinity, however, remain unknown. In this study, we reveal a novel mechanism underlying upregulation of axon-axon attraction by Semaphorin-1a (Sema1a) reverse signaling in the developing Drosophila visual system. Sema1a promotes the phosphorylation and activation of Moesin (Moe), a member of the ezrin/radixin/moesin family of proteins, and downregulates the level of active Rho1 in photoreceptor axons. We propose that Sema1a reverse signaling activates Moe, which in turn upregulates Fas2-mediated axon-axon attraction by inhibiting Rho1.


Assuntos
Axônios/metabolismo , Drosophila melanogaster/metabolismo , Semaforinas/metabolismo , Transdução de Sinais , Animais , Adesão Celular , Moléculas de Adesão Celular Neuronais/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Regulação para Baixo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Fenótipo , Fosforilação , Ligação Proteica , Proteínas rho de Ligação ao GTP/metabolismo
5.
J Neurosci ; 33(44): 17413-21, 2013 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-24174674

RESUMO

Establishment of synaptic connections in the neuropils of the developing nervous system requires the coordination of specific neurite-neurite interactions (i.e., axon-axon, dendrite-dendrite and axon-dendrite interactions). The molecular mechanisms underlying coordination of neurite-neurite interactions for circuit assembly are incompletely understood. In this report, we identify a novel Ig superfamily transmembrane protein that we named Borderless (Bdl), as a novel regulator of neurite-neurite interactions in Drosophila. Bdl induces homotypic cell-cell adhesion in vitro and mediates neurite-neurite interactions in the developing visual system. Bdl interacts physically and genetically with the Ig transmembrane protein Turtle, a key regulator of axonal tiling. Our results also show that the receptor tyrosine phosphatase leukocyte common antigen-related protein (LAR) negatively regulates Bdl to control synaptic-layer selection. We propose that precise regulation of Bdl action coordinates neurite-neurite interactions for circuit formation in Drosophila.


Assuntos
Comunicação Celular/genética , Proteínas de Drosophila/fisiologia , Proteínas de Membrana/fisiologia , Rede Nervosa/fisiologia , Vias Visuais/fisiologia , Animais , Regulação para Baixo/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Feminino , Subunidades de Imunoglobulinas/genética , Imunoglobulinas/genética , Imunoglobulinas/fisiologia , Masculino , Proteínas de Membrana/genética , Mutação/genética , Rede Nervosa/enzimologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Neuritos/fisiologia , Proteínas Tirosina Fosfatases Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Semelhantes a Receptores/fisiologia , Vias Visuais/enzimologia
6.
Mol Brain ; 5: 39, 2012 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-23107101

RESUMO

BACKGROUND: Proper adjustment of moving direction after external mechanical stimulation is essential for animals to avoid danger (e.g. predators), and thus is vital for survival. This process involves sensory inputs, central processing and motor outputs. Recent studies have made considerable progress in identifying mechanosensitive neurons and mechanosensation receptor proteins. Our understandings of molecular and cellular mechanisms that link mechanosensation with the changes in moving direction, however, remain limited. RESULTS: In this study, we investigate the control of movement adjustment in Drosophila. In response to gentle touch at the anterior segments, Drosophila larvae reorient and select a new direction for forward movement. The extent of change in moving direction is correlated with the intensity of tactile stimuli. Sensation of gentle touch requires chordotonal organs and class IV da neurons. Genetic analysis indicates an important role for the evolutionarily conserved immunoglobulin (Ig) superfamily protein Turtle (Tutl) to regulate touch-initiated directional change. Tutl is required specifically in post-mitotic neurons at larval stage after the completion of embryonic development. Circuit breaking analysis identified a small subset of Tutl-positive neurons that are involved in the adjustment of moving direction. CONCLUSION: We identify Tutl and a small subset of CNS neurons in modulating directional change in response to gentle touch. This study presents an excellent starting point for further dissection of molecular and cellular mechanisms controlling directional adjustment after mechanical stimulation.


Assuntos
Drosophila/fisiologia , Movimento/fisiologia , Tato/fisiologia , Animais , Drosophila/embriologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Desenvolvimento Embrionário , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , Larva/fisiologia , Luz , Locomoção , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Nociceptividade/fisiologia , Especificidade de Órgãos , Dor/fisiopatologia , Estimulação Física , Transmissão Sináptica , Transgenes
7.
J Neurosci ; 29(45): 14151-9, 2009 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-19906964

RESUMO

Restriction of adjacent same-type axons/dendrites to separate single columns for specific neuronal connections is commonly observed in vertebrates and invertebrates, and is necessary for proper processing of sensory information. Columnar restriction is conceptually similar to tiling, a phenomenon referring to the avoidance of neurites from adjacent same-type neurons. The molecular mechanism underlying the establishment of columnar restriction or axonal/dendritic tiling remains largely undefined. Here, we identify Turtle (Tutl), a member of the conserved Tutl/Dasm1/IgSF9 subfamily of the Ig superfamily, as a key player in regulating the tiling pattern of R7 photoreceptor terminals in Drosophila. Tutl functions to prevent fusion between two adjacent R7 terminals, and acts in parallel to the Activin pathway. Tutl mediates homophilic cell-cell interactions. We propose that extrinsic terminal-terminal recognition mediated by Tutl, acts in concert with intrinsic Activin-dependent control of terminal growth, to restrict the connection made by each R7 axon to a single column.


Assuntos
Axônios/fisiologia , Proteínas de Drosophila/metabolismo , Imunoglobulinas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células Fotorreceptoras de Invertebrados/fisiologia , Ativinas/metabolismo , Animais , Animais Geneticamente Modificados , Comunicação Celular/fisiologia , Linhagem Celular , Drosophila , Proteínas de Drosophila/genética , Imunoglobulinas/genética , Masculino , Bulbo/crescimento & desenvolvimento , Bulbo/patologia , Bulbo/fisiologia , Proteínas de Membrana/genética , Mutação , Proteínas do Tecido Nervoso/genética , Lobo Óptico de Animais não Mamíferos/crescimento & desenvolvimento , Lobo Óptico de Animais não Mamíferos/patologia , Lobo Óptico de Animais não Mamíferos/fisiologia , Transdução de Sinais
8.
Biochem J ; 368(Pt 2): 605-10, 2002 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-12175332

RESUMO

Aggregation chaperones, consisting of secretory proteins that contain a hexa-histidine epitope tag, enhance the calcium-induced aggregation of regulated secretory proteins and their sorting to secretory granules. The goal of this study was to gain a better understanding of this unusual aggregation mechanism. Hexa-histidine-epitope-tagged secreted alkaline phosphatase, an aggregation chaperone, enhanced the in vitro aggregation of chromogranin A in the presence of calcium, but not in the presence of magnesium or other divalent cations. As an exception, chromogranin was completely aggregated by zinc, even in the absence of the aggregation chaperone. In addition, fluorescence spectroscopy of the aggregation reaction mixture showed an increase in fluorescence intensity consistent with the formation of protein aggregates. The calcium-induced aggregation of chromogranin A was completely inhibited by 0.2% Triton X-100, suggesting that it involves hydrophobic interactions. In contrast, the detergent did not affect chaperone-enhanced aggregation, suggesting that this aggregation does not depend on hydrophobic interactions. EDTA-treated chaperone did not enhance chromogranin A aggregation, indicating that divalent cations are necessary for chaperone action. Although the structure of the aggregation chaperone was not important, the size of the chaperone was. Thus the free His-hexapeptide could not substitute for the aggregation chaperone. Based on these results, we propose that the hexa-histidine tag, in the context of a polypeptide, acts as a divalent cation-dependent nucleation site for chromogranin A aggregation.


Assuntos
Fosfatase Alcalina/metabolismo , Cromograninas/metabolismo , Fosfatase Alcalina/genética , Animais , Cátions , Bovinos , Cromogranina A , Cromograninas/química , Cromograninas/efeitos dos fármacos , Ácido Edético/química , Ácido Edético/farmacologia , Epitopos/genética , Epitopos/metabolismo , Histidina/genética , Histidina/metabolismo , Magnésio/química , Magnésio/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Octoxinol/química , Octoxinol/farmacologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência , Zinco/química , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...