Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biosci ; 35(3): 379-88, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20826947

RESUMO

Plant cysteine protease (CP) genes are induced by abiotic stresses such as drought, yet their functions remain largely unknown. We isolated the full-length cDNA encoding a Triticum aestivum CP gene, designated TaCP, from wheat by the rapid amplification of cDNA ends (RACE) method. Sequence analysis revealed that TaCP contains an open reading frame encoding a protein of 362 amino acids, which is 96% identical to barley cysteine protease HvSF42. The TaCP transcript level in wheat seedlings was upregulated during polyethylene glycol (PEG) stress, with a peak appearing around 12 h after treatment. TaCP expression level increased rapidly with NaCl treatment at 48 h. TaCP responded strongly to low temperature (4 degree C) treatment from 1 h post-treatment and reached a peak of about 40-fold at 72 h. However, it showed only a very slight response to abscisic acid (ABA). More than one copy of TaCP was present in each of the three genomes of hexaploid wheat and its diploid donors. TaCP fused with green fluorescent protein (GFP) was located in the plasma membrane of onion epidermis cells. Transgenic Arabidopsis plants overexpressing TaCP showed stronger drought tolerance and higher CP activity under water-stressed conditions than wild-type Arabidopsis plants. The results suggest that TaCP plays a role in tolerance to water deficit.


Assuntos
Cisteína Proteases/genética , Desidratação/enzimologia , Proteínas de Plantas/genética , Triticum/genética , Sequência de Aminoácidos , Arabidopsis , Clonagem Molecular , Cisteína Proteases/metabolismo , DNA Complementar/genética , Secas , Dosagem de Genes , Dados de Sequência Molecular , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Polietilenoglicóis , Plântula/metabolismo , Análise de Sequência de DNA , Triticum/enzimologia
2.
Ying Yong Sheng Tai Xue Bao ; 20(12): 2957-63, 2009 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-20353062

RESUMO

Taking one hundred and fifty doubled haploid (DH) lines of winter wheat cultivars Hanxuan 10 x Lumai 14 as well as their parents as test materials, the genetic bases of top three leaves length, breadth, and angle at mid-filling stage, and their correlations with yield traits were studied under two water regimes rainfed (drought stress, DS) and well-irrigation (WI) in 2005-2007. Under DS, the leaf length and width of DH lines and their parents were significantly lower than those under WI, whereas the leaf angle had a miscellaneous variation. Under the two water regimes, all the test traits of DH lines had a transgressive segregation, with the variation coefficients ranged from 5.1% to 45.9%. The heritability and gene numbers for the given traits showed great differences. Under WI and DS, the heritability of flag leaf angle (FLA) was the highest (91% and 97%, respectively), and that of the third leaf angle (TLA) was the lowest (23% and 31%, respectively). However, the gene number for FLA (4 and 2 under WI and DS, respectively) was the least, and that of TLA (21 and 25, respectively) in 2007 was the most. Interactive effects were observed among the genes controlling FLA, second leaf angle (SLA), and TLA under WI and DS, and controlling third leaf length (TLL) under WI. The grain number per spike and the grain weight per spike were positively correlated with the length and width of top three leaves, and the thousand-grain weight and the yield per plant were significantly correlated with TLL, FLA, and SLA, but all correlation coefficients were smaller ( < 0.481). It was suggested that the selection of top three leaves length and width should be carried out in the early generations of breeding procedure, while that of leaf angles should be carried out in advanced generations. An appropriate soil moisture regime retained in the critical growth period of the leaves would promote their growth and contribute to the grain yield.


Assuntos
Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Solo/análise , Triticum/genética , Água/metabolismo , China , Ecossistema , Transpiração Vegetal/fisiologia , Triticum/fisiologia
3.
J Exp Bot ; 59(4): 739-51, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18349049

RESUMO

Calreticulin (CRT) is a highly conserved and ubiquitously expressed Ca(2+)-binding protein in multicellular eukaryotes. CRT plays a crucial role in many cellular processes including Ca(2+) storage and release, protein synthesis, and molecular chaperone activity. To elucidate the function of CRTs in plant responses against drought, a main abiotic stress limiting cereal crop production worldwide, a full-length cDNA encoding calreticulin protein namely TaCRT was isolated from wheat (Triticum aestivum L.). The deduced amino acid sequence of TaCRT shares high homology with other plant CRTs. Phylogenetic analysis indicates that TaCRT cDNA clone encodes a wheat CRT3 isoform. Southern analysis suggests that the wheat genome contains three copies of TaCRT. Subcellular locations of TaCRT were the cytoplasm and nucleus, evidenced by transient expression of GFP fused with TaCRT in onion epidermal cells. Enhanced accumulation of TaCRT transcript was observed in wheat seedlings in response to PEG-induced drought stress. To investigate further whether TaCRT is involved in the drought-stress response, transgenic plants were constructed. Compared to the wild-type and GFP-expressing plants, TaCRT-overexpressing tobacco (Nicotiana benthamiana) plants grew better and exhibited less wilt under the drought stress. Moreover, TaCRT-overexpressing plants exhibited enhanced drought resistance to water deficit, as shown by their capacity to maintain higher WUE (water use efficiency), WRA (water retention ability), RWC (relative water content), and lower MDR (membrane damaging ratio) (P < or = 0.01) under water-stress conditions. In conclusion, a cDNA clone encoding wheat CRT was successfully isolated and the results suggest that TaCRT is involved in the plant response to drought stress, indicating a potential in the transgenic improvements of plant water-stress.


Assuntos
Calreticulina/genética , Calreticulina/metabolismo , Dessecação , Triticum/genética , Triticum/metabolismo , Água/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , Desastres , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genoma de Planta , Dados de Sequência Molecular , Filogenia , Raízes de Plantas/citologia , Polietilenoglicóis/farmacologia , Triticum/efeitos dos fármacos
4.
Genetics ; 176(1): 571-84, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17287530

RESUMO

Genetic analyses of nine traits associated with stem water-soluble carbohydrate (SWSC) accumulation and remobilization at grain-filling period under drought stress (DS) and well-watered (WW) conditions were undertaken using doubled haploid lines (DHLs) derived from two Chinese common wheat cultivars. Some significantly and very significantly positive correlation was observed among nine traits associated with SWSC. Higher phenotypic values for most traits were detected under DS. Broad sense heritabilities (h(B)(2)) of the traits showed wide fluctuations between two water treatments. A total of 48 additive and 62 pairs of epistatic QTL for nine traits were identified as distributing on all 21 chromosomes. A majority of QTL involved significant additive and epistatic effects with interactions of QTL and environments (QEIs). Two additive and two pairs of epistatic loci involved only QEIs without corresponding significant additive or epistatic effects. The contributions of the additive QEIs were two- to fourfolds higher than those of their corresponding additive QTL. Most of the additive QEIs for traits associated with SWSC interacted with DS. In addition, some QTL for the grain-filling efficiencies and thousand-grain weight were colocated in the same or adjacent chromosome intervals with QTL for accumulation and remobilization efficiency of SWSC before 14 days after flowering.


Assuntos
Metabolismo dos Carboidratos , Meio Ambiente , Caules de Planta/genética , Caules de Planta/metabolismo , Locos de Características Quantitativas/genética , Triticum/genética , Água/metabolismo , Transporte Biológico , Cromossomos de Plantas/genética , Desastres , Epistasia Genética , Haploidia , Fenótipo , Característica Quantitativa Herdável , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...