Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Research (Wash D C) ; 7: 0413, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979516

RESUMO

Although cytochrome P450 enzymes are the most versatile biocatalysts in nature, there is insufficient comprehension of the molecular mechanism underlying their functional innovation process. Here, by combining ancestral sequence reconstruction, reverse mutation assay, and progressive forward accumulation, we identified 5 founder residues in the catalytic pocket of flavone 6-hydroxylase (F6H) and proposed a "3-point fixation" model to elucidate the functional innovation mechanisms of P450s in nature. According to this design principle of catalytic pocket, we further developed a de novo diffusion model (P450Diffusion) to generate artificial P450s. Ultimately, among the 17 non-natural P450s we generated, 10 designs exhibited significant F6H activity and 6 exhibited a 1.3- to 3.5-fold increase in catalytic capacity compared to the natural CYP706X1. This work not only explores the design principle of catalytic pockets of P450s, but also provides an insight into the artificial design of P450 enzymes with desired functions.

2.
Acta Pharm Sin B ; 13(5): 2234-2249, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37250171

RESUMO

The many-banded krait, Bungarus multicinctus, has been recorded as the animal resource of JinQianBaiHuaShe in the Chinese Pharmacopoeia. Characterization of its venoms classified chief phyla of modern animal neurotoxins. However, the evolutionary origin and diversification of its neurotoxins as well as biosynthesis of its active compounds remain largely unknown due to the lack of its high-quality genome. Here, we present the 1.58 Gbp genome of B. multicinctus assembled into 18 chromosomes with contig/scaffold N50 of 7.53 Mbp/149.8 Mbp. Major bungarotoxin-coding genes were clustered within genome by family and found to be associated with ancient local duplications. The truncation of glycosylphosphatidylinositol anchor in the 3'-terminal of a LY6E paralog released modern three-finger toxins (3FTxs) from membrane tethering before the Colubroidea divergence. Subsequent expansion and mutations diversified and recruited these 3FTxs. After the cobra/krait divergence, the modern unit-B of ß-bungarotoxin emerged with an extra cysteine residue. A subsequent point substitution in unit-A enabled the ß-bungarotoxin covalent linkage. The B. multicinctus gene expression, chromatin topological organization, and histone modification characteristics were featured by transcriptome, proteome, chromatin conformation capture sequencing, and ChIP-seq. The results highlighted that venom production was under a sophisticated regulation. Our findings provide new insights into snake neurotoxin research, meanwhile will facilitate antivenom development, toxin-driven drug discovery and the quality control of JinQianBaiHuaShe.

3.
Biochem Biophys Res Commun ; 582: 125-130, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34710827

RESUMO

CYP76AH1 is the key enzyme in the biosynthesis pathway of tanshinones in Salvia miltiorrhiza, which are famous natural products with activities against various heart diseases and others. CYP76AH1 is a membrane-associated typical plant class II cytochrome P450 enzyme and its catalytic mechanism has not to be clearly elucidated. Structural determination of eukaryotic P450 enzymes is extremely challenging. Recently, we solved the crystal structures of CYP76AH1 and CYP76AH1 in complex with its natural substrate miltiradiene. The structure of CYP76AH1 complexed with miltiradiene is the first plant cytochrome P450 structure in complex with natural substrate. The studies revealed a unique array pattern of amino acid residues, which may play an important role in orienting and stabilizing the substrate for catalysis. This work would provide structural insights into CYP76AH1 and related P450s and the basis to efficiently improve tanshinone production by synthetic biology techniques.


Assuntos
Abietanos/biossíntese , Sistema Enzimático do Citocromo P-450/química , Diterpenos/química , Proteínas de Plantas/química , Salvia miltiorrhiza/química , Abietanos/genética , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Diterpenos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Modelos Moleculares , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Salvia miltiorrhiza/enzimologia , Metabolismo Secundário/genética , Especificidade por Substrato
4.
Biochem Biophys Res Commun ; 511(4): 813-819, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30837155

RESUMO

Tanshinones are important diterpenoid secondary metabolites from Salvia miltiorrhiza, widely used as cardiovascular and cerebrovascular medicines. CYP76AH1 is a membrane-associated cytochrome P450 enzyme and plays a critical role in the biosynthetic pathway of tanshinones. To clarify the relationship between structure and function of CYP76AH1, we recently constructed the expression vector of CYP76AH1 and purified the enzyme. The engineered CYP76AH1 was expressed in E. coli Trans-blue cells and exhibited enhanced expression and solubility. The proper folding of the engineered CYP76AH1 was assessed by CO difference spectrum assay. Functional identification of the recombinant enzyme was performed by conducting enzymatic reaction with the purified CYP76AH1 in presence of substrate, the co-factor NADPH and the purified SmCPR1 (cytochrome P450 reductase from Salvia miltiorrhiza), and by subsequently analyzing the reaction extract through GC-MS. X-ray crystal complex structure of CYP76AH1 with inhibitor 4-phenylimmidazole (4-PI) was determined at the resolution of 2.6 Å. In the ligand-binding cavity of 4-PI bound CYP76AH1, the inhibitor 4-PI forms a hydrogen bound with a water molecule which coordinates with heme at the sixth coordination position. There are two open channels which substrate and product site may access and leave the active site. In the CYP76AH1/4-PI complex structure, the imidazole ring of 4-PI is parallel to helix I instead of perpendicular to helies I in most P450s bound imidazole. 4-PI may be work in the stability of CYP76AH1 crystal structure. These studies provide information on functional expression and purification of CYP76AH1, and overall structure of CYP76AH1 complexed with 4-PI.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Proteínas de Plantas/química , Salvia miltiorrhiza/química , Abietanos/metabolismo , Hidrocarboneto de Aril Hidroxilases , Domínio Catalítico , Cristalografia por Raios X , Sistema Enzimático do Citocromo P-450/metabolismo , Imidazóis/metabolismo , Simulação de Acoplamento Molecular , Proteínas de Plantas/metabolismo , Conformação Proteica , Salvia miltiorrhiza/metabolismo
5.
Zhongguo Zhong Yao Za Zhi ; 43(15): 3064-3069, 2018 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-30200700

RESUMO

Malaria is a worldwide epidemic that extensively endangers health of human beings. Before artemisinin was developed to treat with malaria, about 400 million person-time of malaria infections and at least 1 million deaths from malaria were reported in the world every year. Thus malaria has been listed as one of the world's three major death diseases by the WHO. The discovery of artemisinin by Chinese scientists created a novel therapy approach to treat with malaria effectively. Amorpha-4,11-diene oxidase is a plant cytochrome P450 enzymes, i.e. CYP71AV1, which catalyzes each of the three oxidation steps from amorpha-4,11-diene to form artemisinic acid, the intermediate of artemisinin. CYP71AV1 is the key enzyme in artemisinin biosynthesis. By constructing the prokaryotic expression vector pCWOri(+)-CYP71AV1, functional expression and purification of complementary CYP71AV1 were performed. The enzyme activity was monitored by CO differential spectrum assay and the heme-based activity analysis. The preliminary crystallization condition was obtained by crystallization screening. These studies provide basis for resolving the crystal structure of CYP71AV1 and for producing artemisinin in large scale through biosynthetic biology approach, and will provide references for over expression, purification and crystallization of other plant P450 enzymes.


Assuntos
Artemisia annua/enzimologia , Artemisininas/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Proteínas de Plantas/genética , Artemisia annua/genética , Cristalização , Oxirredução
6.
Protein Expr Purif ; 150: 44-52, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29729886

RESUMO

Plants possess very large numbers of biosynthetic cytochrome P450 enzymes. In spite of the importance of these enzymes for the synthesis of bioactive plant secondary metabolites, only two plant P450 structures has been obtained to date. Isoflavone synthase (IFS) is a membrane-associated cytochrome P450 enzyme catalyzing the entry-point reaction into isoflavonoid biosynthesis. IFS from the model legume Medicago truncatula (CYP93C20) was engineered by deleting the membrane-spanning domain and inserting a hydrophilic polypeptide in the N-terminus and a four histidine tag at the C-terminus. The truncated form exhibited dramatically enhanced expression and solubility. The engineered enzyme was expressed in Escherichia coli XL1-blue cells and was purified by Ni2+-NTA affinity chromatograph and size-exclusion chromatograph. The purified enzyme was characterized by enzyme assay, reduced carbon monoxide difference spectroscopy and peptide mass fingerprinting. The engineered soluble enzyme exhibited the same activity as the full length membrane-associated enzyme expressed in yeast. These studies suggest an approach for engineering plant membrane-associated P450s with enhanced expression and solubility for mechanistic and structural studies.


Assuntos
Sistema Enzimático do Citocromo P-450 , Expressão Gênica , Medicago truncatula/enzimologia , Oxigenases , Proteínas de Plantas , Sistema Enzimático do Citocromo P-450/sangue , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/isolamento & purificação , Escherichia coli/genética , Escherichia coli/metabolismo , Medicago truncatula/genética , Oxigenases/biossíntese , Oxigenases/química , Oxigenases/genética , Oxigenases/isolamento & purificação , Proteínas de Plantas/biossíntese , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
7.
Gigascience ; 6(11): 1-15, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29048480

RESUMO

Ginseng, which contains ginsenosides as bioactive compounds, has been regarded as an important traditional medicine for several millennia. However, the genetic background of ginseng remains poorly understood, partly because of the plant's large and complex genome composition. We report the entire genome sequence of Panax ginseng using next-generation sequencing. The 3.5-Gb nucleotide sequence contains more than 60% repeats and encodes 42 006 predicted genes. Twenty-two transcriptome datasets and mass spectrometry images of ginseng roots were adopted to precisely quantify the functional genes. Thirty-one genes were identified to be involved in the mevalonic acid pathway. Eight of these genes were annotated as 3-hydroxy-3-methylglutaryl-CoA reductases, which displayed diverse structures and expression characteristics. A total of 225 UDP-glycosyltransferases (UGTs) were identified, and these UGTs accounted for one of the largest gene families of ginseng. Tandem repeats contributed to the duplication and divergence of UGTs. Molecular modeling of UGTs in the 71st, 74th, and 94th families revealed a regiospecific conserved motif located at the N-terminus. Molecular docking predicted that this motif captures ginsenoside precursors. The ginseng genome represents a valuable resource for understanding and improving the breeding, cultivation, and synthesis biology of this key herb.


Assuntos
Genoma de Planta , Ginsenosídeos/biossíntese , Panax/genética , Ginsenosídeos/genética , Glicosiltransferases/genética , Hidroximetilglutaril-CoA Redutases/genética , Ácido Mevalônico/metabolismo , Anotação de Sequência Molecular
8.
Plant Cell Physiol ; 58(9): 1558-1572, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28633497

RESUMO

Flavonoids, natural products abundant in the model legume Glycine max, confer benefits to plants and to animal health. Flavonoids are present in soybean mainly as glycoconjugates. However, the mechanisms of biosynthesis of flavonoid glycosides are largely unknown in G. max. In the present study, 212 putative UDP-glycosyltransferase (UGT) genes were identified in G. max by genome-wide searching. The GmUGT genes were distributed differentially among the 20 chromosomes, and they were expressed in various tissues with distinct expression profiles. We further analyzed the enzymatic activities of 11 GmUGTs that are potentially involved in flavonoid glycosylation, and found that six of them (UGT72X4, UGT72Z3, UGT73C20, UGT88A13, UGT88E19 and UGT92G4) exhibited activity toward flavonol, isoflavone, flavone and flavanol aglycones with different kinetic properties. Among them, UGT72X4, UGT72Z3 and UGT92G4 are flavonol-specific UGTs, and UGT73C20 and UGT88E19 exhibited activity toward both flavonol and isoflavone aglycones. In particular, UGT88A13 exhibited activity toward epicatechin, but not for the flavonol aglycones kaempferol and quercetin. Overexpression of these six GmUGT genes significantly increased the contents of isoflavone and flavonol glucosides in soybean hairy roots. In addition, overexpression of these six GmUGT genes also affected flavonol glycoside contents differently in seedlings and seeds of transgenic Arabidopsis thaliana. We provide valuable information on the identification of all UGT genes in soybean, and candidate GmUGT genes for potential metabolic engineering of flavonoid compounds in both Escherichia coli and plants.


Assuntos
Vias Biossintéticas/genética , Flavonóis/biossíntese , Genoma de Planta , Glucosiltransferases/genética , Glycine max/enzimologia , Glycine max/genética , Sequência de Aminoácidos , Arabidopsis/genética , Análise por Conglomerados , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Glucosiltransferases/química , Glucosiltransferases/metabolismo , Cinética , Simulação de Acoplamento Molecular , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/metabolismo , Análise de Sequência de Proteína , Especificidade por Substrato
9.
J Exp Bot ; 68(3): 597-612, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28204516

RESUMO

Flavonols are one of the largest groups of flavonoids that confer benefits for the health of plants and animals. Flavonol glycosides are the predominant flavonoids present in the model legume Lotus japonicus. The molecular mechanisms underlying the biosynthesis of flavonol glycosides as yet remain unknown in L. japonicus. In the present study, we identified a total of 188 UDP-glycosyltransferases (UGTs) in L. japonicus by genome-wide searching. Notably, 12 UGTs from the UGT72 family were distributed widely among L. japonicus chromosomes, expressed in all tissues, and showed different docking scores in an in silico bioinformatics docking analysis. Further enzymatic assays showed that five recombinant UGTs (UGT72AD1, UGT72AF1, UGT72AH1, UGT72V3, and UGT72Z2) exhibit activity toward flavonol, flavone, and isoflavone aglycones. In particular, UGT72AD1, UGT72AH1, and UGT72Z2 are flavonol-specific UGTs with different kinetic properties. In addition, the overexpression of UGT72AD1 and UGT72Z2 led to increased accumulation of flavonol rhamnosides in L. japonicus and Arabidopsis thaliana. Moreover, the increase of kaempferol 3-O-rhamnoside-7-O-rhamnoside in transgenic A. thaliana inhibited root growth as compared with the wild-type control. These results highlight the significance of the UGT72 family in flavonol glycosylation and the role of flavonol rhamnosides in plant growth.


Assuntos
Glucosiltransferases/genética , Lotus/genética , Proteínas de Plantas/genética , Arabidopsis/genética , Flavonóis/biossíntese , Glucosídeos/biossíntese , Glucosiltransferases/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Lotus/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética
10.
Protein J ; 35(6): 401-406, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27812886

RESUMO

Small heat shock proteins assemble as large oligomers in vitro and exhibit ATP-independent chaperone activities. Ile-X-Ile motif is essential in both the function and oligomer formation. AgsA of Salmonella enterica serovar Typhimurium has been demonstrated to adopt large oligomeric structure and possess strong chaperone activity. Size exclusion chromatography, non-denaturing pore gradient PAGE, and negatively stain electron microscopic analysis of the various C-terminal truncated mutants were performed to investigate the role of Ile-X-Ile motif in the oligomer assembly of AgsA. By measuring the ability to prevent insulin from aggregating induced by TCEP, the chaperone-like activity of AgsA and the C-terminal truncated mutants at room temperature were determined. We found that the truncated mutants with Ile-X-Ile motif partially or fully deleted lost the ability to form large oligomers. Contrast to wild type AgsA which displayed weak chaperone-like activity, those mutants shown significantly enhanced activities at room temperature. In summary, biochemical experiment, activity assay and electron microscopic analysis suggested that Ile-X-Ile motif is essential in oligomer assembly of AgsA and might take the role of an inhibitor for its chaperone-like activity at room temperature.


Assuntos
Proteínas de Bactérias/química , Proteínas de Choque Térmico Pequenas/química , Chaperonas Moleculares/química , Salmonella typhimurium/química , Motivos de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Proteínas de Choque Térmico Pequenas/genética , Proteínas de Choque Térmico Pequenas/metabolismo , Insulina/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutação , Fosfinas/química , Plasmídeos/química , Plasmídeos/metabolismo , Agregados Proteicos , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Temperatura
11.
Proteomics ; 15(15): 2701-4, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25781153

RESUMO

To obtain a comprehensive understanding of proteins involved in mitochondrion-sarcoplasmic reticulum (SR) linking, a catalog of proteins from mitochondrion-associated membrane (MAM) of New Zealand white rabbit skeletal muscle were analyzed by an optimized shotgun proteomic method. The membrane fractions were prepared by differential centrifugation and separated by 1D electrophoresis followed by a highly reproducible, automated LC-MS/MS on the hybrid linear ion trap (LTQ)-Orbitrap mass spectrometer. By integrating as low as 1% false discovery rate as one of the features for quality control method, 459 proteins were identified from both of the two independent MAM preparations. Protein pI value, molecular weight range, and transmembrane region were calculated using bioinformatics softwares. One hundred one proteins were recognized as membrane proteins. This protein database suggested that the MAM preparations composed of proteins from mitochondrion, SR, and transverse-tubule. This result indicated mitochondria physically linked with SR in rabbit skeletal muscle, voltage-dependent anion channel 1 (VDAC1), VDAC2, and VDAC3 might participate in formation of the tethers between SR and mitochondria.


Assuntos
Mitocôndrias Musculares/metabolismo , Membranas Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Retículo Sarcoplasmático/metabolismo , Animais , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Musculares/metabolismo , Espectrometria de Massas em Tandem , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Canal de Ânion 2 Dependente de Voltagem/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo
12.
Proteomics ; 13(15): 2335-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23713034

RESUMO

To obtain a comprehensive understanding of proteins involved in excitation-contraction coupling, a catalog of proteins from sarcoplasmic reticulum (SR) membrane fractions of New Zealand white rabbit skeletal muscle was analyzed by an optimized shotgun proteomic method. Light and heavy SR membrane fractions were obtained by nonlinear sucrose gradient centrifugation and separated by 1DE followed by a highly reproducible, automated LC-MS/MS on the hybrid linear ion trap (LTQ) Orbitrap mass spectrometer. By integrating as low as 1% false discovery rate as one of the features for quality control method, 483 proteins were identified from both of the two independent SR preparations. Proteins involved in calcium release unit complex, including ryanodine receptor 1, dihydropyridine receptor, calmodulin, triadin, junctin, and calsequestrin, were all detected, which offered validation for this protein identification method. Rigorous bioinformatics analysis was performed. Protein pI value, molecular weight range, hydrophobicity index, and transmembrane region were calculated using bioinformatics softwares. Eighty-three proteins were classified as hydrophobic proteins and 175 proteins were recognized as membrane proteins. Based on the proteomic analysis results, we found as the first time that not only transverse tubule but also mitochondrion physically connected to SR. The complete mapping of these proteomes may help in the elucidation of the process of excitation-contraction coupling and excitation-metabolism coupling.


Assuntos
Proteínas Musculares/análise , Músculo Esquelético/química , Mapeamento de Peptídeos/métodos , Proteoma/análise , Retículo Sarcoplasmático/química , Animais , Cromatografia Líquida , Biologia Computacional , Eletroforese em Gel de Poliacrilamida , Proteínas Musculares/química , Proteínas Musculares/classificação , Proteoma/química , Proteômica , Coelhos , Espectrometria de Massas em Tandem
13.
Protein Expr Purif ; 2010 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-21138770

RESUMO

Plants possess very large numbers of biosynthetic cytochrome P450 enzymes. In spite of the importance of these enzymes for the synthesis of bioactive plant secondary metabolites, only two plant P450 structures has been obtained to date. Isoflavone synthase (IFS) is a membrane-associated cytochrome P450 enzyme catalyzing the entry-point reaction into isoflavonoid biosynthesis. IFS from the model legume Medicago truncatula (CYP93C20) was engineered by deleting the membrane-spanning domain and inserting a hydrophilic polypeptide in the N-terminus and a four histidine tag at the C-terminus. The truncated form exhibited dramatically enhanced expression and solubility. The engineered enzyme was expressed in Escherichia coli XL1-blue cells and was purified by Ni(2+)-NTA affinity chromatograph and size-exclusion chromatograph. The purified enzyme was characterized by enzyme assay, reduced carbon monoxide difference spectroscopy and peptide mass fingerprinting. The engineered soluble enzyme exhibited the same activity as the full length membrane-associated enzyme expressed in yeast. These studies suggest an approach for engineering plant membrane-associated P450s with enhanced expression and solubility for mechanistic and structural studies.

14.
Proc Natl Acad Sci U S A ; 105(37): 13883-8, 2008 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-18787124

RESUMO

Cytochrome P450s exist ubiquitously in all organisms and are involved in many biological processes. Allene oxide synthase (AOS) is a P450 enzyme that plays a key role in the biosynthesis of oxylipin jasmonates, which are involved in signal and defense reactions in higher plants. The crystal structures of guayule (Parthenium argentatum) AOS (CYP74A2) and its complex with the substrate analog 13(S)-hydroxyoctadeca-9Z,11E-dienoic acid have been determined. The structures exhibit a classic P450 fold but possess a heme-binding mode with an unusually long heme binding loop and a unique I-helix. The structures also reveal two channels through which substrate and product may access and leave the active site. The entrances are defined by a loop between beta3-2 and beta3-3. Asn-276 in the substrate binding site may interact with the substrate's hydroperoxy group and play an important role in catalysis, and Lys-282 at the entrance may control substrate access and binding. These studies provide both structural insights into AOS and related P450s and a structural basis to understand the distinct reaction mechanism.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Heme/química , Heme/metabolismo , Oxirredutases Intramoleculares/química , Oxirredutases Intramoleculares/metabolismo , Asteraceae/enzimologia , Sítios de Ligação , Catálise , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato
15.
Artigo em Inglês | MEDLINE | ID: mdl-18607105

RESUMO

Oxylipins are oxygenated derivatives of fatty acids and pivotal signaling molecules in plants and animals. Allene oxide synthase (AOS) is a key cytochrome P450 CYP74 enzyme involved in the biosynthesis of plant oxylipin jasmonates to convert 13(S)-hydroperoxide to allene oxide. Guayule (Parthenium argentatum) AOS, CYP74A2, was expressed in Escherichia coli. Protein was purified using affinity chromatography and size exclusion chromatography, and then crystallized. Two different crystal forms were obtained from 0.2 M (NH(4))H(2)PO(4), 50% MPD, 0.1 M Tris, pH 8.5 at 277 K using the hanging-drop vapor-diffusion method. Preliminary X-ray analysis was carried out, and the crystals were found to belong to the tetragonal space group I422 with cell parameters a = b = 126.5, c = 163.9 A, and the monoclinic space group C2 with cell parameters a = 336.5, b = 184.2, c = 159.0 A, beta = 118.6 degrees . Diffraction data were collected to 2.4 A resolution from a tetragonal form of crystal using a home X-ray source.


Assuntos
Asteraceae , Sistema Enzimático do Citocromo P-450/química , Oxirredutases Intramoleculares/química , Proteínas de Plantas/química , Difração de Raios X , Cristalização/métodos , Sistema Enzimático do Citocromo P-450/isolamento & purificação , Oxirredutases Intramoleculares/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Proteínas de Plantas/isolamento & purificação
16.
J Mol Biol ; 358(5): 1341-52, 2006 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-16600295

RESUMO

Isoflavonoids play important roles in plant defense and exhibit a range of mammalian health-promoting activities. Isoflavone reductase (IFR) specifically recognizes isoflavones and catalyzes a stereospecific NADPH-dependent reduction to (3R)-isoflavanone. The crystal structure of Medicago sativa IFR with deletion of residues 39-47 has been determined at 1.6A resolution. Structural analysis, molecular modeling and docking, and comparison with the structures of other NADPH-dependent enzymes, defined the putative binding sites for co-factor and substrate and potential key residues for enzyme activity and substrate specificity. Further mutagenesis has confirmed the role of Lys144 as a catalytic residue. This study provides a structural basis for understanding the enzymatic mechanism and substrate specificity of IFRs as well as the functions of IFR-like proteins.


Assuntos
Medicago sativa/enzimologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Isoflavonas/metabolismo , Cinética , Medicago sativa/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , NADP/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Eletricidade Estática
17.
J Biol Chem ; 279(15): 15305-13, 2004 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-14749331

RESUMO

Synthesis of active Klebsiella aerogenes urease requires four accessory proteins to generate, in a GTP-dependent process, a dinuclear nickel active site with the metal ions bridged by a carbamylated lysine residue. The UreD and UreF accessory proteins form stable complexes with urease apoprotein, comprised of UreA, UreB, and UreC. The sites of protein-protein interactions were explored by using homobifunctional amino group-specific chemical cross-linkers with reactive residues being identified by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) of tryptic peptides. On the basis of studies of the UreABCD complex, UreD is capable of cross-linking with UreB Lys(9), UreB Lys(76), and UreC Lys(401). Furthermore UreD appears to be positioned over UreC Lys(515) according to decreased reactivity of this residue compared with its reactivity in UreD-free apoprotein. Several UreB-UreC and UreC-UreC cross-links also were observed within this complex; e.g. UreB Lys(76) with the UreC amino terminus, UreB Lys(9) with UreC Lys(20), and UreC Lys(515) with UreC Lys(89). These interactions are consistent with the proximate surface locations of these residues observed in the UreABC crystal structure. MALDI-TOF MS analyses of UreABCDF are consistent with a cross-link between the UreF amino terminus and UreB Lys(76). On the basis of an unexpected cross-link between UreB Lys(76) and UreC Lys(382) (distant from each other in the UreABC structure) along with increased side chain reactivities for UreC Lys(515) and Lys(522), UreF is proposed to induce a conformational change within urease that repositions UreB and potentially could increase the accessibility of nickel ions and CO(2) to residues that form the active site.


Assuntos
Proteínas de Bactérias/química , Reagentes de Ligações Cruzadas/farmacologia , Enterobacter aerogenes/enzimologia , Espectrometria de Massas/métodos , Urease/química , Apoproteínas/química , Sítios de Ligação , Dióxido de Carbono/química , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , Íons , Lisina/química , Níquel/química , Peptídeos/química , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
18.
Phytochemistry ; 49(6): 1623-1625, 1998 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-11711074

RESUMO

Hairy root cultures of Cassia obtusifolia clones transformed with Agrobacterium rhizogenes strain 9402 were established to investigate the anthraquinone production. Seven anthraquinones, together with betulinic acid, stigmasterol and sitosterol were isolated from the hairy roots. Their chemical structures were elucidated on the basis of chromatographic and spectral data. The effects of culture conditions and rare earth element Eu(3+) on the production of six free anthraquinones have also been investigated. It was found that changes of the elements in the culture medium and addition of rare earth element Eu(3+) can greatly influence the contents of free anthraquinones in the hairy roots.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA