Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biomedical Engineering Letters ; (4): 273-279, 2017.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-654114

RESUMO

The purpose of this study is to investigate a spectrum analysis technique for detecting and monitoring red blood cell (RBC) aggregation using a high-frequency array transducer. To assess the feasibility of this approach, the backscattered radio-frequency signal from non-aggregated and aggregated RBC samples with two hematocrit levels were acquired by using a 30-MHz linear array transducer and analyzed in frequency domain. Three parameters such as spectral slope, midband fit and Y intercept were extracted in a static condition. Fresh porcine blood was used and degrees of aggregation were changed by diluting plasma concentration. From the experiments, it was demonstrated that the spectral slope related to a size of scatterer progressively declined as the level of aggregation increased; its mean values at hematocrit of 40% were 1.10 and −0.22 dB/MHz for RBCs suspended in isotonic phosphate buffered saline and solution with 70% plasma concentrations, respectively. For the midband fit and Y intercept, the mean values were increased by 9.1 and 46.4 dB, respectively. These results indicated that the spectrum analysis technique is useful for monitoring RBC aggregation and can be potentially developed for assessing aggregation in clinical applications.


Assuntos
Eritrócitos , Hematócrito , Plasma , Análise Espectral , Transdutores , Ultrassonografia
2.
IEEE Trans Biomed Eng ; 61(1): 55-63, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24235290

RESUMO

Effective rejection of time-varying clutter originating from slowly moving vessels and surrounding tissues is important for depicting hemodynamics in ultrasound color Doppler imaging (CDI). In this paper, a new adaptive clutter rejection method based on spectral analysis (ACR-SA) is presented for suppressing nonstationary clutter. In ACR-SA, tissue and flow characteristics are analyzed by singular value decomposition and tissue acceleration of backscattered Doppler signals to determine an appropriate clutter filter from a set of clutter filters. To evaluate the ACR-SA method, 20 frames of complex baseband data were acquired by a commercial ultrasound system equipped with a research package (Accuvix V10, Samsung Medison, Seoul, Korea) using a 3.5-MHz convex array probe by introducing tissue movements to the flow phantom (Gammex 1425 A LE, Gammex, Middleton, WI, USA). In addition, 20 frames of in vivo abdominal data from five volunteers were captured. From the phantom experiment, the ACR-SA method provided 2.43 dB (p <; 0.001) and 1.09 dB ( ) improvements in flow signal-to-clutter ratio (SCR) compared to static (STA) and down-mixing (ACR-DM) methods. Similarly, it showed smaller values in fractional residual clutter area (FRCA) compared to the STA and ACR-DM methods (i.e., 2.3% versus 5.4% and 3.7%, respectively, ). The consistent improvements in SCR from the proposed ACR-SA method were obtained with the in vivo abdominal data (i.e., 4.97 dB and 3.39 dB over STA and ACR-DM, respectively). The ACR-SA method showed less than 1% FRCA values for all in vivo abdominal data. These results indicate that the proposed ACR-SA method can improve image quality in CDI by providing enhanced rejection of nonstationary clutter.


Assuntos
Abdome/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Ultrassonografia Doppler/métodos , Humanos , Fígado/diagnóstico por imagem , Movimento/fisiologia , Ultrassonografia Doppler/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...