Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 19(11): 2221-2234, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34160888

RESUMO

Lignins are cell wall-located aromatic polymers that provide strength and hydrophobicity to woody tissues. Lignin monomers are synthesized via the phenylpropanoid pathway, wherein CAFFEOYL SHIKIMATE ESTERASE (CSE) converts caffeoyl shikimate into caffeic acid. Here, we explored the role of the two CSE homologs in poplar (Populus tremula × P. alba). Reporter lines showed that the expression conferred by both CSE1 and CSE2 promoters is similar. CRISPR-Cas9-generated cse1 and cse2 single mutants had a wild-type lignin level. Nevertheless, CSE1 and CSE2 are not completely redundant, as both single mutants accumulated caffeoyl shikimate. In contrast, the cse1 cse2 double mutants had a 35% reduction in lignin and associated growth penalty. The reduced-lignin content translated into a fourfold increase in cellulose-to-glucose conversion upon limited saccharification. Phenolic profiling of the double mutants revealed large metabolic shifts, including an accumulation of p-coumaroyl, 5-hydroxyferuloyl, feruloyl and sinapoyl shikimate, in addition to caffeoyl shikimate. This indicates that the CSEs have a broad substrate specificity, which was confirmed by in vitro enzyme kinetics. Taken together, our results suggest an alternative path within the phenylpropanoid pathway at the level of the hydroxycinnamoyl-shikimates, and show that CSE is a promising target to improve plants for the biorefinery.


Assuntos
Populus , Sistemas CRISPR-Cas/genética , Carboxilesterase , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Populus/genética , Populus/metabolismo
2.
New Phytol ; 230(6): 2275-2291, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33728703

RESUMO

The phenylpropanoid pathway serves a central role in plant metabolism, providing numerous compounds involved in diverse physiological processes. Most carbon entering the pathway is incorporated into lignin. Although several phenylpropanoid pathway mutants show seedling growth arrest, the role for lignin in seedling growth and development is unexplored. We use complementary pharmacological and genetic approaches to block CINNAMATE-4-HYDROXYLASE (C4H) functionality in Arabidopsis seedlings and a set of molecular and biochemical techniques to investigate the underlying phenotypes. Blocking C4H resulted in reduced lateral rooting and increased adventitious rooting apically in the hypocotyl. These phenotypes coincided with an inhibition in AUX transport. The upstream accumulation in cis-cinnamic acid was found to be likely to cause polar AUX transport inhibition. Conversely, a downstream depletion in lignin perturbed phloem-mediated AUX transport. Restoring lignin deposition effectively reestablished phloem transport and, accordingly, AUX homeostasis. Our results show that the accumulation of bioactive intermediates and depletion in lignin jointly cause the aberrant phenotypes upon blocking C4H, and demonstrate that proper deposition of lignin is essential for the establishment of AUX distribution in seedlings. Our data position the phenylpropanoid pathway and lignin in a new physiological framework, consolidating their importance in plant growth and development.


Assuntos
Cinamatos , Plântula , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Plântula/metabolismo , Transcinamato 4-Mono-Oxigenase/genética , Transcinamato 4-Mono-Oxigenase/metabolismo
3.
Front Plant Sci ; 10: 912, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31404271

RESUMO

Wood is a renewable resource that is mainly composed of lignin and cell wall polysaccharides. The polysaccharide fraction is valuable as it can be converted into pulp and paper, or into fermentable sugars. On the other hand, the lignin fraction is increasingly being considered a valuable source of aromatic building blocks for the chemical industry. The presence of lignin in wood is one of the major recalcitrance factors in woody biomass processing, necessitating the need for harsh chemical treatments to degrade and extract it prior to the valorization of the cell wall polysaccharides, cellulose and hemicellulose. Over the past years, large research efforts have been devoted to engineering lignin amount and composition to reduce biomass recalcitrance toward chemical processing. We review the efforts made in forest trees, and compare results from greenhouse and field trials. Furthermore, we address the value and potential of CRISPR-based gene editing in lignin engineering and its integration in tree breeding programs.

4.
Methods Mol Biol ; 1789: 131-141, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29916076

RESUMO

Anthocyanins are intrinsically fluorescent pigments that accumulate in plant vacuoles. We have developed a platform to analyze the fluorescence decay of anthocyanins by fluorescence lifetime imaging microscopy (FLIM), under in vitro and in vivo conditions. Fluorescence lifetime of a fluorophore can be influenced by temperature, pH, oxygen concentration, and other environmental conditions. Within plant cells, the anthocyanin fluorescence lifetime correlates with distinct subcellular compartments. Vacuolar anthocyanins exhibit shorter fluorescence lifetime than the cytoplasmic pool. Consistent with these observations, lower pH of anthocyanins solutions correlated with shorter fluorescence lifetimes. We discuss here the use of FLIM as a tool for analyzing the subcellular distribution of anthocyanins and estimating variation in vacuolar pH in intact cells.


Assuntos
Antocianinas/análise , Arabidopsis/citologia , Microscopia de Fluorescência/métodos , Vacúolos/ultraestrutura , Arabidopsis/química , Arabidopsis/ultraestrutura , Fluorescência , Concentração de Íons de Hidrogênio , Processamento de Imagem Assistida por Computador/métodos , Imagem Óptica/métodos , Software , Vacúolos/química
5.
Plant Direct ; 2(10): e00087, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31245687

RESUMO

Anthocyanins provide ideal visual markers for the identification of mutations that disrupt molecular responses to abiotic stress. We screened Arabidopsis mutants of ABC (ATP-Binding Cassette) and MATE (Multidrug And Toxic compound Extrusion) transporter genes under nutritional stress and identified four genes (ABCG25,ABCG9,ABCG5, and MATE45) required for normal anthocyanin pigmentation. ABCG25 was previously demonstrated to encode a vascular-localized cellular exporter of abscisic acid (ABA). Our results show that MATE45 encodes an aerial meristem- and a vascular-localized transporter associated with the trans-Golgi, and that it plays an important role in controlling the levels and distribution of ABA in growing aerial meristems and non-meristematic tissues. MATE45 promoter-GUS reporter fusions revealed the activity localized to the leaf and influorescence meristems and the vasculature. Loss-of-function mate45 mutants exhibited accelerated rates of aerial organ initiation suggesting at least partial functional conservation with the maize ortholog bige1. The aba2-1 mutant, which is deficient in ABA biosynthesis, exhibited a number of phenotypes that were rescued in the mate45-1 aba2-1 double mutant. mate45 exhibited enhanced the seed dormancy, and germination was hypersensitive to ABA. Enhanced frequency of leaf primordia growth in mate45 seedlings grown in nutrient imbalance stress was ABA-dependent. The ABA signaling reporter construct pRD29B::GUS revealed elevated levels of ABA signaling in the true leaf primordia of mate45 seedlings grown under nutritional stress, and gradually reduced signaling in surrounding cotyledon and hypocotyl tissues concomitant with reduced expressions of ABCG25. Our results suggest a role of MATE45 in reducing meristematic ABA and in maintaining ABA distribution in adjacent non-meristematic tissues.

6.
Plant J ; 88(5): 895-903, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27500780

RESUMO

Anthocyanins are flavonoid pigments that accumulate in most seed plants. They are synthesized in the cytoplasm but accumulate inside the vacuoles. Anthocyanins are pigmented at the lower vacuolar pH, but in the cytoplasm they can be visualized based on their fluorescence properties. Thus, anthocyanins provide an ideal system for the development of new methods to investigate cytoplasmic pools and association with other molecular components. We have analyzed the fluorescence decay of anthocyanins by fluorescence lifetime imaging microscopy (FLIM), in both in vitro and in vivo conditions, using wild-type and mutant Arabidopsis thaliana seedlings. Within plant cells, the amplitude-weighted mean fluorescence lifetime (τm ) correlated with distinct subcellular localizations of anthocyanins. The vacuolar pool of anthocyanins exhibited shorter τm than the cytoplasmic pool. Consistently, lowering the pH of anthocyanins in solution shortened their fluorescence decay. We propose that FLIM is a useful tool for understanding the trafficking of anthocyanins and, potentially, for estimating vacuolar pH inside intact plant cells.


Assuntos
Antocianinas/metabolismo , Microscopia de Fluorescência/métodos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Concentração de Íons de Hidrogênio
7.
Plant Cell ; 27(9): 2545-59, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26342015

RESUMO

Anthocyanins are flavonoid pigments synthesized in the cytoplasm and stored inside vacuoles. Many plant species accumulate densely packed, 3- to 10-µm diameter anthocyanin deposits called anthocyanin vacuolar inclusions (AVIs). Despite their conspicuousness and importance in organ coloration, the origin and nature of AVIs have remained controversial for decades. We analyzed AVI formation in cotyledons of different Arabidopsis thaliana genotypes grown under anthocyanin inductive conditions and in purple petals of lisianthus (Eustoma grandiorum). We found that cytoplasmic anthocyanin aggregates in close contact with the vacuolar surface are directly engulfed by the vacuolar membrane in a process reminiscent of microautophagy. The engulfed anthocyanin aggregates are surrounded by a single membrane derived from the tonoplast and eventually become free in the vacuolar lumen like an autophagic body. Neither endosomal/prevacuolar trafficking nor the autophagy ATG5 protein is involved in the formation of AVIs. In Arabidopsis, formation of AVIs is promoted by both an increase in cyanidin 3-O-glucoside derivatives and by depletion of the glutathione S-transferase TT19. We hypothesize that this novel microautophagy mechanism also mediates the transport of other flavonoid aggregates into the vacuole.


Assuntos
Antocianinas/metabolismo , Arabidopsis/citologia , Autofagia/fisiologia , Gentianaceae/citologia , Vacúolos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Citoplasma/metabolismo , Retículo Endoplasmático/metabolismo , Fluorescência , Gentianaceae/metabolismo , Glucosídeos/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Membranas Intracelulares/metabolismo , Mutação , Células Vegetais/metabolismo , Plantas Geneticamente Modificadas , Plântula/citologia , Plântula/genética
8.
Plant Signal Behav ; 10(7): e1027850, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26179363

RESUMO

Anthocyanins are induced in plants in response to abiotic stresses such as drought, high salinity, excess light, and cold, where they often correlate with enhanced stress tolerance. Numerous roles have been proposed for anthocyanins induced during abiotic stresses including functioning as ROS scavengers, photoprotectants, and stress signals. We have recently found different profiles of anthocyanins in Arabidopsis (Arabidopsis thaliana) plants exposed to different abiotic stresses, suggesting that not all anthocyanins have the same function. Here, we discuss these findings in the context of other studies and show that anthocyanins induced in Arabidopsis in response to various abiotic stresses have different localizations at the organ and tissue levels. These studies provide a basis to clarify the role of particular anthocyanin species during abiotic stress.


Assuntos
Antocianinas/metabolismo , Arabidopsis/fisiologia , Estresse Fisiológico , Absorção de Radiação , Arabidopsis/efeitos dos fármacos , Luz , Sulfato de Magnésio/farmacologia , Estresse Fisiológico/efeitos dos fármacos
9.
Plant Cell ; 27(4): 1200-17, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25829439

RESUMO

Protein trafficking requires proper ion and pH homeostasis of the endomembrane system. The NHX-type Na(+)/H(+) antiporters NHX5 and NHX6 localize to the Golgi, trans-Golgi network, and prevacuolar compartments and are required for growth and trafficking to the vacuole. In the nhx5 nhx6 T-DNA insertional knockouts, the precursors of the 2S albumin and 12S globulin storage proteins accumulated and were missorted to the apoplast. Immunoelectron microscopy revealed the presence of vesicle clusters containing storage protein precursors and vacuolar sorting receptors (VSRs). Isolation and identification of complexes of VSRs with unprocessed 12S globulin by 2D blue-native PAGE/SDS-PAGE indicated that the nhx5 nhx6 knockouts showed compromised receptor-cargo association. In vivo interaction studies using bimolecular fluorescence complementation between VSR2;1, aleurain, and 12S globulin suggested that nhx5 nhx6 knockouts showed a significant reduction of VSR binding to both cargoes. In vivo pH measurements indicated that the lumens of VSR compartments containing aleurain, as well as the trans-Golgi network and prevacuolar compartments, were significantly more acidic in nhx5 nhx6 knockouts. This work demonstrates the importance of NHX5 and NHX6 in maintaining endomembrane luminal pH and supports the notion that proper vacuolar trafficking and proteolytic processing of storage proteins require endomembrane pH homeostasis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Vacúolos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Eletroforese em Gel de Poliacrilamida , Regulação da Expressão Gênica de Plantas , Transporte Proteico/fisiologia , Vacúolos/genética , Rede trans-Golgi/metabolismo
10.
Methods Mol Biol ; 1209: 63-80, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25117275

RESUMO

High-resolution imaging of endosomal compartments and associated organelles can be achieved using state-of-the-art electron microscopy techniques, such as the combination of cryofixation/freeze-substitution for sample processing and electron tomography for three-dimensional (3D) analysis. This chapter deals with the main steps associated with these imaging techniques: selection of samples suitable for studying plant endosomes, sample preparation by high-pressure freezing/freeze-substitution, and electron tomography of plastic sections. In addition, immunogold approaches for identification of subcellular localization of endosomal and cargo proteins are also discussed.


Assuntos
Endossomos/ultraestrutura , Microscopia Eletrônica/métodos , Biologia Molecular/métodos , Rede trans-Golgi/ultraestrutura , Arabidopsis/ultraestrutura , Criopreservação/métodos , Sementes/ultraestrutura
11.
Planta ; 240(5): 931-40, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24903357

RESUMO

MAIN CONCLUSION: Different abiotic stress conditions induce distinct sets of anthocyanins, indicating that anthocyanins have different biological functions, or that decoration patterns of each anthocyanin are used for unique purposes during stress. The induction of anthocyanin accumulation in vegetative tissues is often considered to be a response of plants to biotic or abiotic stress conditions. Arabidopsis thaliana (Arabidopsis) accumulates over 20 anthocyanins derived from the anthocyanidin cyanidin in an organ-specific manner during development, but the anthocyanin chemical diversity for their alleged stress protective functions remains unclear. We show here that, when grown in various abiotic stress conditions, Arabidopsis not only often accumulates significantly higher levels of total anthocyanins, but different stress conditions also favor the accumulation of different sets of anthocyanins. For example, the anthocyanin patterns of seedlings grown at pH 3.3 or in media lacking phosphate are very similar and characterized by relatively high levels of the anthocyanins A8 and A11. In contrast, anthocyanin inductive conditions (AIC) provided by high sucrose media are characterized by high accumulation of A9* and A5 relative to other stress conditions. The modifications present in each condition correlate reasonably well with the induction of the respective anthocyanin modification enzymes. Taken together, our results suggest that Arabidopsis anthocyanin profiles provide 'fingerprints' that reflect the stress status of the plants.


Assuntos
Antocianinas/biossíntese , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Estresse Fisiológico , Antocianinas/química , Antocianinas/isolamento & purificação , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Análise por Conglomerados , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Manitol/farmacologia , Estrutura Molecular , Plântula/genética , Plântula/metabolismo , Cloreto de Sódio/farmacologia , Espectrofotometria
12.
Annu Rev Plant Biol ; 62: 273-97, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21370977

RESUMO

Changes in the levels of Ca(2+), pH, and reactive oxygen species (ROS) are recognized as key cellular regulators involved in diverse physiological and developmental processes in plants. Critical to understanding how they exert such widespread control is an appreciation of their spatial and temporal dynamics at levels from organ to organelle and from seconds to many hours. With appropriate controls, fluorescent sensors can provide a robust approach with which to quantify such changes in Ca(2+), pH, and ROS in real time, in vivo. The fluorescent cellular probes available for visualization split into two broad classes: (a) dyes and (b) an increasingly diverse set of genetically encoded sensors based around green fluorescent proteins (GFPs). The GFP probes in particular can be targeted to well-defined subcellular locales, offering the possibility of high-resolution mapping of these signals within the cell.


Assuntos
Cálcio/metabolismo , Microscopia de Fluorescência/métodos , Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cálcio/análise , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/análise , Peróxido de Hidrogênio/análise , Concentração de Íons de Hidrogênio , Proteínas Luminescentes/análise , Sondas Moleculares , Oxirredução , Espécies Reativas de Oxigênio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...