Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 42(10): 2229-2236, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37294059

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are ubiquitous in the environment. Locations where PFAS-containing aqueous film-forming foam (AFFF) has been used or accidentally released have resulted in persistently high concentrations of PFAS, including in surface water that may be adjacent to release sites. Perfluorooctane sulfonic acid (PFOS) is most frequently measured near AFFF release sites; however, other PFAS are being quantified more frequently and, of those, perfluorononanoic acid (PFNA) is common. The goal of our study was to fill data gaps on PFNA toxicity to freshwater fish using the fathead minnow (Pimephales promelas). We aimed to understand how PFNA may impact apical endpoints following a 42-day exposure to mature fish and a 21-day exposure to second-generation larval fish. Exposure concentrations were 0, 124, 250, 500, and 1000 µg/L for both adult (F0) and larval (F1) generations. The most sensitive endpoint measured was development in the F1 generation at concentrations of ≥250 µg/L. The 10% and 20% effective concentration of the tested population for the F1 biomass endpoint was 100.3 and 129.5 µg/L, respectively. These data were collated with toxicity values from the primary literature on aquatic organisms exposed to PFNA for subchronic or chronic durations. A species sensitivity distribution was developed to estimate a screening-level threshold for PFNA. The resulting hazard concentration protective of 95% of the freshwater aquatic species was 55 µg PFNA/L. Although this value is likely protective of aquatic organisms exposed to PFNA, it is prudent to consider that organisms experience multiple stressors (including many PFAS) simultaneously; an approach to understand screening-level thresholds for PFAS mixtures remains an uncertainty within the field of ecological risk assessment. Environ Toxicol Chem 2023;42:2229-2236. © 2023 SETAC.


Assuntos
Ácidos Alcanossulfônicos , Cyprinidae , Fluorocarbonos , Poluentes Químicos da Água , Animais , Fluorocarbonos/toxicidade , Fluorocarbonos/análise , Larva , Ácidos Graxos , Organismos Aquáticos , Água , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
2.
Environ Sci Technol ; 56(10): 6078-6090, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35486899

RESUMO

Researchers have developed numerous per- and polyfluoroalkyl substances (PFAS)-free aqueous film-forming foam (AFFF) formulations to replace PFAS-containing AFFF used for fire suppression. As part of the Department of Defense's Strategic Environmental Research and Development Program (SERDP), we examined the direct lethal effects of seven PFAS-free AFFF and a PFAS-containing AFFF on 14 aquatic species using a series of lethal concentration (LC50) tests. We assessed the LC10, LC50, and LC90 values using log-logistic and logit analyses. Across all aquatic species tested, we discovered that exposure to at least one PFAS-free AFFF was more or as toxic as exposure to the PFAS-containing AFFF. For most cases, National Foam Avio F3 Green KHC 3% and Buckeye Platinum Plus C6MILSPEC 3% were the most and least toxic formulations, respectively. Moreover, we found consistency among results from multiple experiments using the same minnow species (Pimephales promelas) and among closely related taxa (e.g., daphnids, amphibians). Lastly, the LC50 values for AFFF formulations trended lower for tested marine species as compared to those of freshwater species. These results dramatically increase the current knowledge on the potentially toxic effects of AFFF but also highlight the need for additional research and the development of new PFAS-free AFFF that are more "ecologically friendly" than those containing persistent PFAS.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Aerossóis , Fluorocarbonos/análise , Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
3.
Environ Toxicol Chem ; 41(5): 1260-1275, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35349191

RESUMO

Standard bioaccumulation tests are commonly conducted using Macoma nasuta (clam), and Alitta virens (polychaete) for marine tests, and Lumbriculus variegatus (an oligochaete) for freshwater tests. Because the interlaboratory variability associated with these tests is unknown, four experienced laboratories conducted standard 28-day bioaccumulation tests with the above species using sediments contaminated with polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs). Chemical analysis of tissue samples was performed by a single laboratory. The intralaboratory variance among replicates was relatively low for PCB tissue concentrations, with coefficients of variation (CVs) ranging from 9% to 28% for all laboratories and species, with the exception of one laboratory reporting higher variability for L. variegatus (CV = 51%). Intralaboratory variance for PCB tissue concentrations was higher than interlaboratory variance for A. virens and L. variegatus, and the magnitude of difference (MOD) for laboratory means ranged from 1.4 to 2.0 across species. Intralaboratory variability was also low for lipid content, and lipid normalization of PCB and PAH body residues generally had little impact on variability. In addition to variability across bioassay laboratories, analytical variability was evaluated by different laboratories measuring the concentration of PCBs and total lipids in a subsample of tissue homogenate of sediment-exposed test organisms. Variability associated with tissue analysis was higher than bioassay laboratory variability only in tests with L. variegatus. Statistical differences between samples may be observed due to the low intralaboratory variability; however, the biological significance of these differences may be limited because the MOD is low. Considering the MOD when comparing bioaccumulation across treatments accounts for uncertainty related to inherent variability of the test in the interpretation of statistically significant results. Environ Toxicol Chem 2022;41:1260-1275. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.


Assuntos
Bivalves , Oligoquetos , Bifenilos Policlorados , Poluentes Químicos da Água , Animais , Bioacumulação , Sedimentos Geológicos/química , Lipídeos/análise , Bifenilos Policlorados/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...