Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35839341

RESUMO

Flexible, Cd-free, and all-dry process Cu(In,Ga)(S,Se)2 (CIGSSe) solar cells on stainless steel (SUS) substrates are fabricated, and their structure consists of SUS/glass (SiO2)/Mo/CIGSSe absorber/sputtered Zn0.84Mg0.16O/sputtered Zn1-xMgxO:Al transparent conductive oxide (TCO). The effect of the sample position during the sputtering of Zn0.84Mg0.16O buffer and Zn1-xMgxO:Al TCO layers of the solar cells is examined to avoid intense plasma exposure. The sample position plays a vital role in improving the cell performance. Namely, the sample position close to the material targets of the sputtering system causes severe exposure of the sample to the intense plasma, giving rise to low and nonuniform local external quantum efficiency (EQE) with very weak electroluminescence (EL) imaging, thereby reducing photovoltaic performance. On the other hand, the deviation of the sample position from material targets helps to avoid the intense plasma, thus resulting in high and uniform local EQE with bright EL imaging as well as reducing carrier recombination rates (or carrier lifetimes) throughout the solar cells. Ultimately, the conversion efficiency of flexible, Cd-free, and all-dry process CIGSSe solar cells is enhanced to 16.5% under the optimized sample position deviation from material targets to avoid intense plasma exposure.

2.
Phys Chem Chem Phys ; 24(3): 1262-1285, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34935800

RESUMO

Chalcopyrite CuInSe2 (CISe)-based thin-film photovoltaic solar cells have been attracting attention since the 1970s. The technologies of CISe-based thin-film growth and device fabrication processes have already been put into practical applications and today commercial products are available. Nevertheless, there are numerous poorly understood areas in the physical and chemical aspects of the underlying materials science and interfacial and bulk defect physics in CISe-based thin-films and devices for further developments. In this paper, current issues in physical and chemical studies of CISe-based materials and devices are reviewed. Correlations between Cu-deficient phases and the effects of alkali-metals, applications to lightweight and flexible solar minimodules, single-crystalline epitaxial Cu(In,Ga)Se2 films and devices, differences between Cu(In,Ga)Se2 and Ag(In,Ga)Se2 materials, wide-gap CuGaSe2 films and devices, all-dry processed CISe-based solar cells with high photovoltaic efficiencies, and also fundamental studies on open circuit voltage loss analysis and the energy band structure at the interface are among the main areas of discussion in this review.

3.
ACS Appl Mater Interfaces ; 12(19): 22298-22307, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32320201

RESUMO

The structures of K or Cs alkaline-treated Cu(In,Ga)(S,Se)2 (CIGSSe) solar cells are developed, and their carrier recombination rates are scrutinized. It is determined that short-circuit current density (JSC) is enhanced (decreased optical loss), when ZnS(O,OH), (Cd,Zn)S, and Zn0.8Mg0.2O buffers with a large band gap energy (Eg) are applied as a replacement of CdS buffer. The JSC is further increased, reducing the optical loss more, when Zn0.9Mg0.1O:B is used as the transparent conductive oxide (TCO) with a larger Eg and lower free carrier absorption than those of ZnO:Al. Furthermore, all carrier recombination rates throughout the devices with K or Cs treatment, especially at the buffer/absorber interface and in the quasi neutral region, are reduced, thereby reducing open-circuit voltage deficit (VOC,def), well consistent with the simulated ones. The carrier recombination rate at the buffer/absorber interface is further decreased, when the CdS and (Cd,Zn)S buffers, deposited by chemical bath deposition, are applied, leading to the greater reduction of the VOC,def and the high conversion efficiency (η) of about 21%. Under the trade-off between VOC,def and optical loss, the highest η of 22.6% is attained with the lowest power loss (or the highest VOC × JSC) in the Cs-treated Cd-free CIGSSe solar cell with an optimized structure of glass/Mo/CIGSSe/Zn0.8Mg0.2O/Zn0.9Mg0.1O:B, fabricated by the all-dry process, where the Zn0.8Mg0.2O buffer is prepared by the sputtering method. This occurs because the JSC is the highest attributable to the larger Eg of Zn0.8Mg0.2O buffer than those of the CdS and (Cd,Zn)S.

4.
ACS Appl Mater Interfaces ; 11(7): 7539-7545, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30694052

RESUMO

Cd-free Cu(In,Ga)(S,Se)2 (CIGSSe) solar cells with a structure of glass/Mo/CIGSSe/Zn1- xMg xO (buffer)/Zn1- xMg xO:Al (TCO), fabricated by an all dry process, are characterized using ultraviolet light excited time-resolved photoluminescence (UV-TRPL). The impact of bandgap energy ( Eg) values of buffer and transparent conductive oxide (TCO) layers, denoted by Eg of buffer and TCO, is examined. The Eg values of buffer and TCO layers are kept almost similar and varied from 3.30 to 3.94 eV. In this work, UV-TRPL measurement is performed to examine the UV-TRPL carrier lifetimes near the Zn1- xMg xO buffer/CIGSSe interface in the solar cell structure. It is revealed that the UV-TRPL carrier lifetimes near the Zn1- xMg xO buffer/CIGSSe interface in Cd-free solar cells are increased upon enhancing the Eg of buffer and TCO from 3.30 to 3.94 eV, thus increasing the open-circuit voltage and fill factor. Additionally, short-circuit current density is enhanced up to about 38 mA/cm2 owing to the highly transparent Zn1- xMg xO/Zn1- xMg xO:Al layers. Ultimately, an 18.5%-efficient Cd-free solar cell with the Eg of buffer and TCO of 3.94 eV, prepared by an all dry process, is fabricated, which has the same level of 18.3% for the reference solar cell (glass/Mo/CIGSSe/CdS/ZnO/ZnO:Al).

5.
Nano Lett ; 18(6): 3600-3607, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29701473

RESUMO

Frequently observed high Voc loss in tin-lead mixed perovskite solar cells is considered to be one of the serious bottle-necks in spite of the high attainable Jsc due to wide wavelength photon harvesting. An amicable solution to minimize the Voc loss up to 0.50 V has been demonstrated by introducing an n-type interface with spike structure between the absorber and electron transport layer inspired by highly efficient Cu(In,Ga)Se2 solar cells. Introduction of a conduction band offset of ∼0.15 eV with a thin phenyl-C61-butyric acid methyl ester layer (∼25 nm) on the top of perovskite absorber resulted into improved Voc of 0.75 V leading to best power conversion efficiency of 17.6%. This enhancement is attributed to the facile charge flow at the interface owing to the reduction of interfacial traps and carrier recombination with spike structure as evidenced by time-resolved photoluminescence, nanosecond transient absorption, and electrochemical impedance spectroscopy measurements.

6.
ACS Appl Mater Interfaces ; 10(13): 11361-11368, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29533596

RESUMO

Development of Cd-free Cu(In,Ga)(S,Se)2 (CIGSSe)-based thin-film solar cells fabricated by an all-dry process is intriguing to minimize optical loss at a wavelength shorter than 520 nm owing to absorption of the CdS buffer layer and to be easily integrated into an in-line process for cost reduction. Cd-free CIGSSe solar cells are therefore prepared by the all-dry process with a structure of Zn0.9Mg0.1O:Al/Zn0.8Mg0.2O/CIGSSe/Mo/glass. It is demonstrated that Zn0.8Mg0.2O and Zn0.9Mg0.1O:Al are appropriate as buffer and transparent conductive oxide layers with large optical band gap energy values of 3.75 and 3.80 eV, respectively. The conversion efficiency (η) of the Cd-free CIGSSe solar cell without K-treatment is consequently increased to 18.1%. To further increase the η, the Cd-free CIGSSe solar cell with K-treatment is next fabricated and followed by posttreatment called the heat-light-soaking (HLS) + light-soaking (LS) process, including HLS at 110 °C followed by LS under AM 1.5G illumination. It is disclosed that the HLS + LS process gives rise to not only the enhancement of carrier density but also the decrease in the carrier recombination rate at the buffer/absorber interface. Ultimately, the η of the Cd-free CIGSSe solar cell with K-treatment prepared by the all-dry process is enhanced to the level of 20.0%.

7.
ACS Appl Mater Interfaces ; 10(6): 5455-5463, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29368914

RESUMO

A silver (Ag)-incorporated kesterite Cu2ZnSnS4 (CZTS) thin film was fabricated by a facile spray pyrolysis method. Crystallographic analyses indicated successful incorporation of various amounts of Ag up to a Ag/(Ag + Cu) ratio of ca. 0.1 into the crystal lattice of CZTS in a homogeneous manner without formation of other impurity compounds. From the results of morphological investigations, Ag-incorporated films had larger crystal grains than the CZTS film. The sample with a relatively low Ag content (Ag/(Ag + Cu) of ca. 0.02) had a compact morphology without appreciable voids and pinholes. However, an increase in the Ag content in the CZTS film (Ag/(Ag + Cu) ca. 0.10) induced the formation of a large number of pinholes. As can be expected from these morphological properties, the best sunlight conversion efficiency was obtained by the solar cell based on the film with Ag/(Ag + Cu) of ca. 0.02. Electrostructural analyses of the devices suggested that the Ag-incorporated film in the device achieved reduction in the amounts of unfavorable copper on zinc antisite defects compared to the bare CZTS film. Moreover, the use of a Ag-incorporated film improved band alignment at the CdS(buffer)-CZTS interface. These alterations should also contribute to enhancement of device properties.

8.
ACS Appl Mater Interfaces ; 9(39): 33827-33832, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28898045

RESUMO

We report on the optimization of interface structure in ZnSnP2 solar cells. The effects of back electrode materials and related interface on photovoltaic performance were investigated. It was clarified that a conventional structure Mo/ZnSnP2 showed a Schottky-behavior, while an ohmic-behavior was observed in the Cu/ZnSnP2 structure annealed at 300 °C. STEM-EDX analysis suggested that Cu-Sn-P ternary compound was formed at the interface. This compound is considered to play an important role to obtain the ohmic contact between ZnSnP2 and Cu. In addition, it was clarified that the aqua regia etching of ZnSnP2 bulk crystals before chemical bath deposition process for the preparation of buffer layer was effective to remove the layer including lattice defects introduced by mechanical-polishing, which was supported by TEM observations and photoluminescence measurements. This means that the carrier transport across the interface was improved because of the reduced defect at the interface. Consequently, the conversion efficiency of approximately 2% was achieved with the structure of Al/ZnO;Al/ZnO/CdS/ZnSnP2/Cu, where the values of short circuit current density, JSC, open circuit voltage, VOC, and fill factor, FF, were 8.2 mA cm-2, 0.452 V, and 0.533, respectively. However, the value of VOC was largely low considering the bandgap value of ZnSnP2. To improve the conversion efficiency, the optimization of buffer layer material is considered to be essential in the viewpoint of band alignment.

9.
ChemSusChem ; 9(17): 2414-20, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27514989

RESUMO

Pure sulfide Cu2 ZnSnS4 thin films were fabricated on Mo-coated glass substrates by facile spray deposition of aqueous precursor solutions containing Cu(NO3 )2 , Zn(NO3 )2 , Sn(CH3 SO3 )2 , and thiourea followed by annealing at 600 °C. When a precursor solution containing a stoichiometric composition of Cu, Zn, and Sn was used, the resulting Cu2 ZnSnS4 thin film contained a Cu2-x S impurity phase owing to the evaporation of Sn components during the annealing process. The Cu2-x S impurity in the Cu2 ZnSnS4 thin film was removed by reducing the concentration of Cu in the precursor solution. This resulted in an improvement of the structural features (i.e., grain sizes and compactness) as well as the electric properties such as acceptor densities, the nature of the acceptor defects, and carrier lifetimes. A solar cell based on the Cu2 ZnSnS4 film with an empirically optimal composition showed conversion efficiency of 8.1 %. The value achieved was one of the best efficiencies of Cu2 ZnSnS4 -based cells derived from a non-vacuum process.


Assuntos
Cobre/química , Fontes de Energia Elétrica , Energia Solar , Sulfetos/química , Estanho/química , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...