Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Cell Int ; 22(1): 122, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35300689

RESUMO

BACKGROUND: Cancer stem cells (CSCs) play crucial role in tumor progression, drug resistance and relapse in various cancers. CSC niche is comprised of various stromal cell types including Tumor-associated macrophages (TAMs). Extrinsic ques derived from these cells help in maintenance of CSC phenotype. TAMs have versatile roles in tumor progression however their function in enrichment of CSC is poorly explored. METHODS: Mouse macrophages (RAW264.7) cells were activated by interaction with conditioned media (CM) of murine breast cancer cells (4T1) into TAMs and the effect of activated macrophage (TAM) derived factors was examined on enrichment of cancer stem cells (CSCs) and tumor growth using in vitro and in vivo models. RESULTS: In this study, we report that macrophages upon interaction with breast cancer cells activate tumor promoting function and exhibit differential expression of various proteins as shown by secretome analysis using proteomics studies. Based on secretome data, we found that Interleukin-6 (IL-6) is one of the up-regulated genes expressed in activated macrophages. Further, we confirm that TAMs produce high levels of IL-6 and breast cancer cell derived factors induce IL-6 production in activated macrophages via p38-MAPK pathway. Furthermore, we demonstrate that tumor activated macrophages induce enrichment of CSCs and expression of CSC specific transcription factors such as Sox-2, Oct-3/4 and Nanog in breast cancer cells. We further prove that TAM derived IL-6 plays a key role in TAM mediated CSC enrichment through activation of Signal transducer and activator of transcription 3 (STAT-3) signaling. TAM derived IL-6 influences breast cancer cell migration and angiogenesis. Moreover, our in vivo findings indicated that TAM derived IL-6 induces CSC population and resulting tumor growth in breast cancer. CONCLUSION: These finding provide evidence that TAM derived IL-6 plays a major role in CSC enrichment and tumor progression in breast cancer and IL-6 and its regulated signalling network may act as potential therapeutic target for management of breast cancer.

2.
Cancers (Basel) ; 15(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36612248

RESUMO

Phytochemicals possess various intriguing pharmacological properties against diverse pathological conditions. Extensive studies are on-going to understand the structural/functional properties of phytochemicals as well as the molecular mechanisms of their therapeutic function against various disease conditions. Phytochemicals such as curcumin (Cur), genistein (Gen), and tanshinone-IIA (Tan IIA) have multifaceted therapeutic potentials and various efforts are in progress to understand the molecular dynamics of their function with different tools and technologies. Cur is an active lipophilic polyphenol with pleiotropic function, and it has been shown to possess various intriguing properties including antioxidant, anti-inflammatory, anti-microbial, anticancer, and anti-genotoxic properties besides others beneficial properties. Similarly, Gen (an isoflavone) exhibits a wide range of vital functions including antioxidant, anti-inflammatory, pro-apoptotic, anti-proliferative, anti-angiogenic activities etc. In addition, Tan IIA, a lipophilic compound, possesses antioxidant, anti-angiogenic, anti-inflammatory, anticancer activities, and so on. Over the last few decades, the field of proteomics has garnered great momentum mainly attributed to the recent advancement in mass spectrometry (MS) techniques. It is envisaged that the proteomics technology has considerably contributed to the biomedical research endeavors lately. Interestingly, they have also been explored as a reliable approach to understand the molecular intricacies related to phytochemical-based therapeutic interventions. The present review provides an overview of the proteomics studies performed to unravel the underlying molecular intricacies of various phytochemicals such as Cur, Gen, and Tan IIA. This in-depth study will help the researchers in better understanding of the pharmacological potential of the phytochemicals at the proteomics level. Certainly, this review will be highly instrumental in catalyzing the translational shift from phytochemical-based biomedical research to clinical practice in the near future.

3.
Expert Rev Proteomics ; 17(6): 433-451, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32576061

RESUMO

INTRODUCTION: Proteomic research has been extensively used to identify potential biomarkers or targets for various diseases. Advances in mass spectrometry along with data analytics have led proteomics to become a powerful tool for exploring the critical molecular players associated with diseases, thereby, playing a significant role in the development of proteomic applications for the clinic. AREAS COVERED: This review presents recent advances in the development and clinical applications of proteomics in India toward understanding various diseases including cancer, metabolic diseases, and reproductive diseases. Keywords combined with 'clinical proteomics in India' 'proteomic research in India' and 'mass spectrometry' were used to search PubMed. EXPERT OPINION: The past decade has seen a significant increase in research in clinical proteomics in India. This approach has resulted in the development of proteomics-based marker technologies for disease management in the country. The majority of these investigations are still in the discovery phase and efforts have to be made to address the intended clinical use so that the identified potential biomarkers reach the clinic. To move toward this necessity, there is a pressing need to establish some key infrastructure requirements and meaningful collaborations between the clinicians and scientists which will enable more effective solutions to address health issues specific to India.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias/genética , Proteoma/genética , Proteômica/tendências , Humanos , Índia , Espectrometria de Massas , Neoplasias/diagnóstico
4.
Int J Oncol ; 57(1): 325-337, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32377723

RESUMO

Multiple myeloma (MM) is a plasma cell­associated cancer and accounts for 13% of all hematological malignancies, worldwide. MM still remains an incurable plasma cell malignancy with a poor prognosis due to a lack of suitable markers. Therefore, discovering novel markers and targets for diagnosis and therapeutics of MM is essential. The present study aims to identify markers associated with MM malignancy using patient­derived MM mononuclear cells (MNCs). Label­free quantitative proteomics analysis revealed a total of 192 differentially regulated proteins, in which 79 proteins were upregulated and 113 proteins were found to be downregulated in MM MNCs as compared to non­hematological malignant samples. The identified differentially expressed candidate proteins were analyzed using various bioinformatics tools, including Ingenuity Pathway Analysis (IPA), Protein Analysis THrough Evolutionary Relationships (PANTHER), Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and Database for Annotation, Visualization and Integrated Discovery (DAVID) to determine their biological context. Among the 192 candidate proteins, marginal zone B and B1 cell specific protein (MZB1) was investigated in detail using the RPMI-8226 cell line model of MM. The functional studies revealed that higher expression of MZB1 is associated with promoting the progression of MM pathogenesis and could be established as a potential target for MM in the future.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Biomarcadores Tumorais/metabolismo , Mieloma Múltiplo/patologia , Proteínas Adaptadoras de Transdução de Sinal/análise , Idoso , Biomarcadores Tumorais/análise , Biópsia , Medula Óssea/patologia , Linhagem Celular Tumoral , Biologia Computacional , Progressão da Doença , Regulação para Baixo , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/diagnóstico , Proteômica , Regulação para Cima
5.
Front Oncol ; 10: 566804, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33585190

RESUMO

Multiple myeloma (MM) is a plasma cell-associated cancer and exists as the second most common hematological malignancy worldwide. Although researchers have been working on MM, a comprehensive quantitative Bone Marrow Interstitial Fluid (BMIF) and serum proteomic analysis from the same patients' samples is not yet reported. The present study involves the investigation of alterations in the BMIF and serum proteome of MM patients compared to controls using multipronged quantitative proteomic approaches viz., 2D-DIGE, iTRAQ, and SWATH-MS. A total of 279 non-redundant statistically significant differentially abundant proteins were identified by the combination of three proteomic approaches in MM BMIF, while in the case of serum 116 such differentially abundant proteins were identified. The biological context of these dysregulated proteins was deciphered using various bioinformatic tools. Verification experiments were performed in a fresh independent cohort of samples using immunoblotting and mass spectrometry based SRM assays. Thorough data evaluation led to the identification of a panel of five proteins viz., haptoglobin, kininogen 1, transferrin, and apolipoprotein A1 along with albumin that was validated using ELISA in a larger cohort of serum samples. This panel of proteins could serve as a useful tool in the diagnosis and understanding of the pathophysiology of MM in the future.

6.
J Proteomics ; 209: 103504, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31465861

RESUMO

Among the blood cancers, 13% mortality is caused by Multiple myeloma (MM) type of hematological malignancy. In spite of therapeutic advances in chemotherapy treatment, still MM remains an incurable disease is mainly due to emergence of chemoresistance. At present time, FDA approved bortezomib is the first line drug for MM treatment. However, like other chemotherapy, MM patients are acquiring resistance against bortezomib. The present study aims to identify and validate bortezomib resistant protein targets in MM using iTRAQ and label free quantitative proteomic approaches. 112 differentially expressed proteins were commonly found in both approaches with similar differential expression pattern. Exportin-1 (XPO1) protein was selected for further validation as its significant high expression was observed in both iTRAQ and label free analysis. Bioinformatic analysis of these common differentially expressed proteins showed a clear cluster of proteins such as SMC1A, RCC2, CSE1, NUP88, NUP50, TPR, HSPA14, DYNLL1, RAD21 and RANBP2 being associated with XPO1. Functional studies like cell count assay, flow cytometry assay and soft agar assay proved that XPO1 knock down in RPMI 8226R cell line results in re-sensitization to bortezomib drug. The mass spectrometry data are available via ProteomeXchange with identifier PXD013859. BIOLOGICAL SIGNIFICANCE: Multiple myeloma (MM) is a type of hematological malignancy which constitutes about 13% of all blood cell related malignancies. Chemoresistance is one of the major obstacles for the successful treatment for MM. Bortezomib is a first proteasome inhibitor drug, widely used in MM treatment. The present study aims to identify and validate bortezomib resistant protein targets in MM. Here, we identified 112 candidate proteins to be associated with bortezomib resistance using global quantitative proteomic analysis. Among these candidate proteins, we show that XPO1 plays crucial role in emerging bortezomib resistance using functional studies like cell count assay, flow cytometry assay and soft agar assay. XPO1 could be a potential therapeutic target for MM and development of inhibitors of XPO1 might help to cure MM.


Assuntos
Bortezomib/farmacologia , Resistencia a Medicamentos Antineoplásicos , Carioferinas/fisiologia , Mieloma Múltiplo/tratamento farmacológico , Proteômica/métodos , Receptores Citoplasmáticos e Nucleares/fisiologia , Antineoplásicos/farmacologia , Bortezomib/uso terapêutico , Contagem de Células , Linhagem Celular Tumoral , Biologia Computacional , Citometria de Fluxo , Técnicas de Silenciamento de Genes , Humanos , Carioferinas/genética , Receptores Citoplasmáticos e Nucleares/genética , Proteína Exportina 1
7.
RSC Adv ; 9(51): 29522-29532, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-35531512

RESUMO

Multiple myeloma (MM) is the second most prevalent hematological malignancy characterized by rapid proliferation of plasma cells, which leads to overproduction of antibodies. MM affects around 15% of all hemato-oncology cases across the world. The present study involves identification of metabolomic alterations in the serum of an MM cohort compared to healthy controls using both LC-MRM/MS based targeted and GC-MS based untargeted approaches. Several MM specific serum metabolomic signatures were observed in this study. A total of 54 metabolites were identified as being significantly altered in MM cohort, out of which, 26 metabolites were identified from LC-MRM/MS based targeted analysis, whereas 28 metabolites were identified from the GC-MS based untargeted analysis. Receiver operating characteristic (ROC) curve analysis demonstrated that six metabolites each from both the datasets can be projected as marker metabolites to discriminate MM subjects with higher specificity and sensitivity. Moreover, pathway analysis deciphered that several metabolic pathways were altered in MM including pyrimidine metabolism, purine metabolism, amino acid metabolism, nitrogen metabolism, sulfur metabolism, and the citrate cycle. Comprehensively, this study contributes valuable information regarding MM induced serum metabolite alterations and their pathways, which could offer further insights into this cancer.

8.
Curr Top Med Chem ; 18(30): 2584-2598, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30499398

RESUMO

Chemoresistance is one of the major hurdles in cancer treatment leading to recurrence of cancer and affects the overall survival of patients. Cancer chemoresistance can be associated with various phenomena including modulation of vital cellular pathways. Unrevealing these alterations could provide a better understanding of chemoresistance and assist in the identification of new targets to overcome it. Recent advances in the field of proteomics and metabolomics have substantially helped in the identification of potential targets for chemoresistance in various cancers. This review highlights the potential of proteomics and metabolomics research to explore the putative targets associated with cancer chemoresistance with a special focus on Multiple Myeloma (MM). MM is a type of hematological malignancy which constitutes about 13% of all blood cell cancers. The therapeutic advancements for MM have increased the median overall survival rate to over 3-fold in the last one and half decade. Although in recent times, significant improvements in the overall survival rate of MM are achieved, MM remains an incurable disease with unpredictable refractory mechanisms. In spite of therapeutic advances, chemoresistance thrives to be a major hurdle in the treatment of multiple myeloma which demands a better understanding of chemoresistance. In this review, we have attempted to highlight the potential applications of proteomics and metabolomics research in the understanding of chemoresistance in MM.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Metabolômica , Mieloma Múltiplo/tratamento farmacológico , Proteômica , Animais , Antineoplásicos/química , Humanos , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia
9.
Metabolomics ; 14(8): 107, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-30830381

RESUMO

INTRODUCTION: Invasive ductal carcinoma (IDC) is a type of breast cancer, usually detected in advanced stages due to its asymptomatic nature which ultimately leads to low survival rate. Identification of urinary metabolic adaptations induced by IDC to understand the disease pathophysiology and monitor therapy response would be a helpful approach in clinical settings. Moreover, its non-invasive and cost effective strategy better suited to minimize apprehension among high risk population. OBJECTIVE: This study aims toward investigating the urinary metabolic alterations of IDC by targeted (LC-MRM/MS) and untargeted (GC-MS) approaches for the better understanding of the disease pathophysiology and monitoring therapy response. METHODS: Urinary metabolic alterations of IDC subjects (63) and control subjects (63) were explored by targeted (LC-MRM/MS) and untargeted (GC-MS) approaches. IDC specific urinary metabolomics signature was extracted by applying both univariate and multivariate statistical tools. RESULTS: Statistical analysis identified 39 urinary metabolites with the highest contribution to metabolomic alterations specific to IDC. Out of which, 19 metabolites were identified from targeted LC-MRM/MS analysis, while 20 were identified from the untargeted GC-MS analysis. Receiver operator characteristic (ROC) curve analysis evidenced 6 most discriminatory metabolites from each type of approach that could differentiate between IDC subjects and controls with higher sensitivity and specificity. Furthermore, metabolic pathway analysis depicted several dysregulated pathways in IDC including sugar, amino acid, nucleotide metabolism, TCA cycle etc. CONCLUSIONS: Overall, this study provides valuable inputs regarding altered urinary metabolites which improved our knowledge on urinary metabolomic alterations induced by IDC. Moreover, this study identified several dysregulated metabolic pathways which offer further insight into the disease pathophysiology.


Assuntos
Neoplasias da Mama/metabolismo , Carcinoma Ductal de Mama/metabolismo , Cromatografia Líquida/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metaboloma , Espectrometria de Massas em Tandem/métodos , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Estudos de Casos e Controles , Feminino , Humanos , Redes e Vias Metabólicas , Curva ROC
10.
J Proteomics ; 138: 95-105, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-26898345

RESUMO

Chemoresistance is one of the leading health concerns in cancer treatment. Understanding the mechanism of chemoresistance is the best way to improve the survival of the patient. Etoposide and its analogues are widely used as antitumor drugs in lung cancer but many etoposide resistant lung cancer cases has been identified in recent years. The present study aims to explore the cellular response of lung cancer cell lines to etoposide and finding the potential chemoresistant marker proteins. Multiple proteomic platforms like 2-DE, DIGE and iTRAQ have been used to study the global proteome profile of NCI-H460 and etoposide resistant NCI-H460R cell lines. Our study revealed that etoposide treatment leads to alteration of 83 proteins in NCI-H460R cell lines. The functional analysis highlighted the role of the differential expressed proteins in cellular signaling, apoptosis, and cytoskeleton reorganization. Our study has identified several new proteins like RHOC, DLG5, UGDH, TMOD3 in addition to known chemoresistance associated proteins. In silico prediction of the important selected candidates are further validated at protein and mRNA level. Further, functional studies of newly identified candidate genes RHOC and DLG5 revealed that chemotherapeutic resistance is associated with their elevated level and may serve as novel targets for therapeutic intervention. BIOLOGICAL SIGNIFICANCE: Etoposide and its analogues have been used for lung cancer treatment for a while and it was reported that many non small cell lung carcinoma patients are resistant to etoposide. Although etoposide show drug resistance, the exact mechanism was not well understood. The present study focused on the global proteome analysis of NCI-H460 and NCI-H460R cell lines using multiple proteomic platforms to understand the potential chemoresistant markers for etoposide. Our multi-proteomic analysis has showed differential expression of 83 proteins involved in oxidative phosphorylation, metabolic, protein folding, cytoskeleton associated protein along with apoptotic pathway has been identified. In addition, quite a few interesting proteins such as RHOC, DLG5, HSP90, citrate synthase, UDP-glucose-6-dehydrogenase, Tropomodulin-3 are involved in chemoresistance has been observed. Overall, this is the first comprehensive proteomic study on etoposide resistant cell line NCI-H460 to explore the mechanism of chemoresistance in lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Resistencia a Medicamentos Antineoplásicos , Etoposídeo/farmacologia , Perfilação da Expressão Gênica , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/biossíntese , Proteômica , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...