Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 509
Filtrar
1.
bioRxiv ; 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39282286

RESUMO

Förster resonance energy transfer (FRET) between fluorescent proteins (FPs) is widely used in the design of genetically encoded fluorescent biosensors, which are powerful tools for monitoring the dynamics of biochemical activities in live cells. FRET ratio, defined as the ratio between acceptor and donor signals, is often used as a proxy for the actual FRET efficiency, which must be corrected for signal crosstalk using donor-only and acceptor-only samples. However, the FRET ratio is highly sensitive to imaging conditions, making direct comparisons across different experiments and over time challenging. Inspired by a method for multiplexed biosensor imaging using barcoded cells, we reasoned that calibration standards with fixed FRET efficiency can be introduced into a subset of cells for normalization of biosensor signals. Our theoretical analysis indicated that the FRET ratio of high-FRET species relative to non-FRET species slightly decreases at high excitation intensity, suggesting the need for calibration using both high and low FRET standards. To test these predictions, we created FRET donor-acceptor pairs locked in "FRET-ON" and "FRET-OFF" conformations and introduced them into a subset of barcoded cells. Our results confirmed the theoretical predictions and showed that the calibrated FRET ratio is independent of imaging settings. We also provided a strategy for calculating the FRET efficiency. Together, our study presents a simple strategy for calibrated and highly multiplexed imaging of FRET biosensors, facilitating reliable comparisons across experiments and supporting long-term imaging applications.

2.
Protein Sci ; 33(10): e5131, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39290110

RESUMO

DNA methyltransferase 3B (DNMT3B) plays a crucial role in DNA methylation during mammalian development. Mutations in DNMT3B are associated with human genetic diseases, particularly immunodeficiency, centromere instability, facial anomalies (ICF) syndrome. Although ICF syndrome-related missense mutations in the DNMT3B have been identified, their precise impact on protein structure and function remains inadequately explored. Here, we delve into the impact of four ICF syndrome-linked mutations situated in the DNMT3B dimeric interface (H814R, D817G, V818M, and R823G), revealing that each of these mutations compromises DNA-binding and methyltransferase activities to varying degrees. We further show that H814R, D817G, and V818M mutations severely disrupt the proper assembly of DNMT3B homodimer, whereas R823G does not. We also determined the first crystal structure of the methyltransferase domain of DNMT3B-DNMT3L tetrameric complex hosting the R823G mutation showing that the R823G mutant displays diminished hydrogen bonding interactions around T775, K777, G823, and Q827 in the protein-DNA interface, resulting in reduced DNA-binding affinity and a shift in sequence preference of +1 to +3 flanking positions. Altogether, our study uncovers a wide array of fundamental defects triggered by DNMT3B mutations, including the disassembly of DNMT3B dimers, reduced DNA-binding capacity, and alterations in flanking sequence preferences, leading to aberrant DNA hypomethylation and ICF syndrome.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Metilação de DNA , DNA Metiltransferase 3B , Doenças da Imunodeficiência Primária , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/química , DNA (Citosina-5-)-Metiltransferases/metabolismo , Humanos , Doenças da Imunodeficiência Primária/genética , Síndromes de Imunodeficiência/genética , Modelos Moleculares , Mutação de Sentido Incorreto , Face/anormalidades
3.
Front Vet Sci ; 11: 1455338, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39280835

RESUMO

Understanding the differences in ubiquitination-modified proteins between Duroc pigs and Tibetan fragrant pigs is crucial for comprehending the growth and development of their skeletal muscles. In this study, skeletal muscle samples from 30-day-old Duroc pigs and Tibetan fragrant pigs were collected. Using ubiquitination 4D-Label free quantitative proteomics, we analyzed and identified ubiquitination-modified peptides, screening out 109 differentially expressed ubiquitination-modified peptides. Further enrichment analysis was conducted on the proteins associated with these differential peptides. GO analysis results indicated that the differential genes were primarily enriched in processes such as regulation of protein transport, motor activity, myosin complex, and actin cytoskeleton. KEGG pathway analysis revealed significant enrichment in pathways such as Glycolysis/Gluconeogenesis and Hippo signaling pathway. The differentially expressed key ubiquitinated proteins, including MYL1, MYH3, TNNC2, TNNI1, MYLPF, MYH1, MYH7, TNNT2, TTN, and TNNC1, were further identified. Our analysis demonstrates that these genes play significant roles in skeletal muscle protein synthesis and degradation, providing new insights into the molecular mechanisms of muscle development in Duroc pigs and Tibetan fragrant pigs, and offering theoretical support for breeding improvements in the swine industry.

4.
APL Bioeng ; 8(3): 036110, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39165611

RESUMO

Cartilage damage, a common cause of osteoarthritis, requires medical imaging for accurate diagnosis of pathological changes. However, current instruments can acquire limited imaging information due to sensitivity and resolution issues. Therefore, multimodal imaging is considered an alternative strategy to provide valuable images and analyzes from different perspectives. Among all biomaterials, gold nanomaterials not only exhibit outstanding benefits as drug carriers, in vitro diagnostics, and radiosensitizers, but are also widely used as contrast agents, particularly for tumors. However, their potential for imaging cartilage damage is rarely discussed. In this study, we developed a versatile iodinated gadolinium-gold nanomaterial, AuNC@BSA-Gd-I, and its radiolabeled derivative, AuNC@BSA-Gd-131I, for cartilage detection. With its small size, negative charge, and multimodal capacities, the probe can penetrate damaged cartilage and be detected or visualized by computed tomography, MRI, IVIS, and gamma counter. Additionally, the multimodal imaging potential of AuNC@BSA-Gd-I was compared to current multifunctional gold nanomaterials containing similar components, including anionic AuNC@BSA, AuNC@BSA-I, and AuNC@BSA-Gd as well as cationic AuNC@CBSA. Due to their high atomic numbers and fluorescent emission, AuNC@BSA nanomaterials could provide fundamental multifunctionality for imaging. By further modifying AuNC@BSA with additional imaging materials, their application could be extended to various types of medical imaging instruments. Nonetheless, our findings showed that each of the current nanomaterials exhibited excellent abilities for imaging cartilage with their predominant imaging modalities, but their versatility was not comparable to that of AuNC@BSA-Gd-I. Thus, AuNC@BSA-Gd-I could be served as a valuable tool in multimodal imaging strategies for cartilage assessment.

5.
J Formos Med Assoc ; 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39183142

RESUMO

AIMS: This study aimed to assess the accuracy of a two-protein panel for mismatch repair (MMR) immunohistochemistry (IHC) compared to a four-protein panel in a cohort of endometrial cancer patients. METHODS: The study included patients diagnosed with endometrial cancer between January 2018 and December 2023 with patients underwent MMR IHC staining for the four-protein panel (MSH2, MSH6, MLH1, and PMS2) serving as the reference standard. Various combinations of two proteins were examined and evaluated for their accuracy against the four-protein panel. Sensitivity, negative predictive value (NPV), and negative likelihood ratio were calculated for each combination. McNemar's test was performed to assess discordance, and receiver operating characteristic (ROC) curves were generated to evaluate diagnostic accuracy. RESULTS: Of 593 patients, MMR deficiency defined as at least one protein loss was observed in 146 patients (24.62%). When compared with four-protein panel, the highest sensitivity was observed with the MSH6/PMS2 combination (99.32%), followed sequentially by MSH6/MLH1 (97.26%), MSH2/PMS2 (93.15%), MSH2/MLH1 (91.10%), MLH1/PMS2 (79.45%), and MSH2/MSH6 (21.92%). The MSH6/PMS2 combination also demonstrated the best NPV of 99.78% and negative likelihood ratio of 0.01, while MSH6/MLH1 showed satisfactory NPV of 99.11% and negative likelihood ratio of 0.03. McNemar's test revealed no statistical difference between the four-protein panel and the MSH6/PMS2 panel (p = 1.000), and the MSH6/MLH1 panel (p = 0.125). CONCLUSIONS: The two-protein panel, particularly MSH6/PMS2, offers high sensitivity and negative predictive value, suggesting its potential as a cost-effective alternative to the four-protein panel in MMR testing for endometrial cancer patients.

7.
Front Immunol ; 15: 1416751, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39040095

RESUMO

Tissue-resident memory T cells (TRM) are a specialized subset of long-lived memory T cells that reside in peripheral tissues. However, the impact of TRM-related immunosurveillance on the tumor-immune microenvironment (TIME) and tumor progression across various non-small-cell lung cancer (NSCLC) patient populations is yet to be elucidated. Our comprehensive analysis of multiple independent single-cell and bulk RNA-seq datasets of patient NSCLC samples generated reliable, unique TRM signatures, through which we inferred the abundance of TRM in NSCLC. We discovered that TRM abundance is consistently positively correlated with CD4+ T helper 1 cells, M1 macrophages, and resting dendritic cells in the TIME. In addition, TRM signatures are strongly associated with immune checkpoint and stimulatory genes and the prognosis of NSCLC patients. A TRM-based machine learning model to predict patient survival was validated and an 18-gene risk score was further developed to effectively stratify patients into low-risk and high-risk categories, wherein patients with high-risk scores had significantly lower overall survival than patients with low-risk. The prognostic value of the risk score was independently validated by the Cancer Genome Atlas Program (TCGA) dataset and multiple independent NSCLC patient datasets. Notably, low-risk NSCLC patients with higher TRM infiltration exhibited enhanced T-cell immunity, nature killer cell activation, and other TIME immune responses related pathways, indicating a more active immune profile benefitting from immunotherapy. However, the TRM signature revealed low TRM abundance and a lack of prognostic association among lung squamous cell carcinoma patients in contrast to adenocarcinoma, indicating that the two NSCLC subtypes are driven by distinct TIMEs. Altogether, this study provides valuable insights into the complex interactions between TRM and TIME and their impact on NSCLC patient prognosis. The development of a simplified 18-gene risk score provides a practical prognostic marker for risk stratification.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Células T de Memória , Microambiente Tumoral , Humanos , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/genética , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Prognóstico , Células T de Memória/imunologia , Memória Imunológica , Linfócitos do Interstício Tumoral/imunologia
8.
Int Urol Nephrol ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39078466

RESUMO

AIMS: Low-energy shock waves (LESWs) are known to alter cell-membrane permeability. This study aimed to investigate the effect of LESWs on Escherichia coli and E. coli-induced cystitis in rats. MAIN METHODS: Standardized suspensions of E. coli ATCC25922 were treated with or without LESWs (100 or 300 pulses; 0.12 mJ/mm2; 2 pulses/s) followed by bacterial counting, an antibiotic sensitivity test, and gene ontology analysis and gene-set enrichment analysis. Intravesical administration of saline or E. coli (0.5 mL with 108 CFU/mL) for 30 min was performed in female Sprague-Dawley rats. The rats were treated with or without LESWs (300 pulses; 0.12 mJ/mm2; 2 pulses/s) on days 4 and 5. The changes in inflammatory reactions, uroplakin IIIa staining, and correlation with urodynamic findings were assessed on day 8. KEY FINDINGS: LESW treatment induced a decrease in CFU and the autoaggregation rate and increased the inhibition zone sizes in a cefazolin-sensitivity study. These changes were associated with gene expression in regulation of cellular membrane components, biofilm formation, and the ATP-binding cassette transporter pathway. E. coli induced bladder hyperactivity and an inflammatory reaction as well as decreased uroplakin IIIa staining; these effects were partially reversed by LESW treatment. SIGNIFICANCE: The LESW antibacterial effect occurs by altering bacterial cell-membrane gene expression, enhancing antibiotic sensitivity, and inhibiting bladder inflammatory reaction and overactivity. These findings support the potential benefits of LESWs for treatment of recurrent or refractory bacterial cystitis.

9.
Molecules ; 29(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38999054

RESUMO

Gastrin-releasing peptide receptor (GRPR), overexpressed in many solid tumors, is a promising imaging marker and therapeutic target. Most reported GRPR-targeted radioligands contain a C-terminal amide. Based on the reported potent antagonist D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-NHOH, we synthesized C-terminal hydroxamate-derived [68Ga]Ga-LW02075 ([68Ga]Ga-DOTA-pABzA-DIG-D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-NHOH) and [68Ga]Ga-LW02050 ([68Ga]Ga-DOTA-Pip-D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-NHOH), and compared them with the closely related and clinically validated [68Ga]Ga-SB3 ([68Ga]Ga-DOTA-pABzA-DIG-D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-NHEt). Binding affinities (Ki) of Ga-SB3, Ga-LW02075, and Ga-LW02050 were 1.20 ± 0.31, 1.39 ± 0.54, and 8.53 ± 1.52 nM, respectively. Both Ga-LW02075 and Ga-LW02050 were confirmed to be GRPR antagonists by calcium release assay. Imaging studies showed that PC-3 prostate cancer tumor xenografts were clearly visualized at 1 h post injection by [68Ga]Ga-SB3 and [68Ga]Ga-LW02050 in PET images, but not by [68Ga]Ga-LW02075. Ex vivo biodistribution studies conducted at 1 h post injection showed that the tumor uptake of [68Ga]Ga-LW02050 was comparable to that of [68Ga]Ga-SB3 (5.38 ± 1.00 vs. 6.98 ± 1.36 %ID/g), followed by [68Ga]Ga-LW02075 (3.97 ± 1.71 %ID/g). [68Ga]Ga-SB3 had the highest pancreas uptake (37.3 ± 6.90 %ID/g) followed by [68Ga]Ga-LW02075 (17.8 ± 5.24 %ID/g), while the pancreas uptake of [68Ga]Ga-LW02050 was only 0.53 ± 0.11 %ID/g. Our data suggest that [68Ga]Ga-LW02050 is a promising PET tracer for detecting GRPR-expressing cancer lesions.


Assuntos
Radioisótopos de Gálio , Ácidos Hidroxâmicos , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Receptores da Bombesina , Receptores da Bombesina/metabolismo , Receptores da Bombesina/antagonistas & inibidores , Radioisótopos de Gálio/química , Animais , Humanos , Tomografia por Emissão de Pósitrons/métodos , Camundongos , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacocinética , Ácidos Hidroxâmicos/síntese química , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/farmacocinética , Linhagem Celular Tumoral , Distribuição Tecidual , Masculino , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/metabolismo
10.
Antib Ther ; 7(2): 177-186, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38933532

RESUMO

Cancer immunotherapy represents a paradigm shift in oncology, offering a superior anti-tumor efficacy and the potential for durable remission. The success of personalized vaccines and cell therapies hinges on the identification of immunogenic epitopes capable of eliciting an effective immune response. Current limitations in the availability of immunogenic epitopes restrict the broader application of such therapies. A critical criterion for serving as potential cancer antigens is their ability to stably bind to the major histocompatibility complex (MHC) for presentation on the surface of tumor cells. To address this, we have developed a comprehensive database of MHC epitopes, experimentally validated for their MHC binding and cell surface presentation. Our database catalogs 451 065 MHC peptide epitopes, each with experimental evidence for MHC binding, along with detailed information on human leukocyte antigen allele specificity, source peptides, and references to original studies. We also provide the grand average of hydropathy scores and predicted immunogenicity for the epitopes. The database (MHCepitopes) has been made available on the web and can be accessed at https://github.com/jcm1201/MHCepitopes.git. By consolidating empirical data from various sources coupled with calculated immunogenicity and hydropathy values, our database offers a robust resource for selecting actionable tumor antigens and advancing the design of antigen-specific cancer immunotherapies. It streamlines the process of identifying promising immunotherapeutic targets, potentially expediting the development of effective antigen-based cancer immunotherapies.

11.
bioRxiv ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38895281

RESUMO

Selective manipulation of neural circuits using optogenetics and chemogenetics holds great translational potential but requires genetic access to neurons. Here, we demonstrate a general framework for identifying genetic tool-independent, pharmacological strategies for neural circuit-selective modulation. We developed an economically accessible calcium imaging-based approach for large-scale pharmacological scans of endogenous receptor-mediated neural activity. As a testbed for this approach, we used the mouse locus coeruleus due to the combination of its widespread, modular efferent neural circuitry and its wide variety of endogenously expressed GPCRs. Using machine learning-based action potential deconvolution and retrograde tracing, we identified an agonist cocktail that selectively inhibits medial prefrontal cortex-projecting locus coeruleus neurons. In vivo, this cocktail produces synergistic antinociception, consistent with selective pharmacological blunting of this neural circuit. This framework has broad utility for selective targeting of other neural circuits under different physiological and pathological states, facilitating non-genetic translational applications arising from cell type-selective discoveries.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38734831

RESUMO

In this study, we examined the risk of sexually transmitted infections (STIs) among adolescents and young adults (AYAs) with borderline personality disorder (BPD). A total of 4649 AYAs with BPD and 46,490 age-, sex-, and socioeconomic-matched controls without BPD were enrolled from the National Health Insurance Research Database of Taiwan from 2001 to 2009 and were followed up until the end of 2011. Participants who contracted any STI during the follow-up period were identified. Cox regression analysis was conducted to examine the risk of contracting any STI among both patients and controls. A total of 4649 AYAs with BPD and 46,490 age-, sex-, and socioeconomic-matched controls without BPD were enrolled from the National Health Insurance Research Database of Taiwan from 2001 to 2009 and were followed up until the end of 2011. Participants who contracted any STI (ICD-9-CM code 042, 091-097, 087.11, 078.8, 078.88, 131, and 054.1) during the follow-up period were identified. Cox regression and sub-analyses stratified by sex, age, psychiatric comorbidity subgroups, and psychotropic medication usage were conducted to assess STI risk. AYAs with BPD were at a higher risk of contracting any STI (hazard ratio [HR] = 50.79, 95% confidence interval [CI] = 33.45-77.11) in comparison with controls, including HIV, syphilis, genital warts, gonorrhea, chlamydia, trichomoniasis, and genital herpes. The association of BPD with an increased risk of any STI was prevalent in both sexes, adolescents, and young adult patients. BPD with or without psychiatric comorbid subgroup were all associated with an elevated risk of contracting any STI relative to the control group. AYAs with BPD are highly susceptible to contracting STIs. Future studies should examine the role of the core symptoms of BPD, sexual orientation, risky sex behaviors, depressive and anxiety symptoms, and substance use before sex in the risk of STIs among AYAs with BPD.

13.
Pharmaceuticals (Basel) ; 17(5)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38794191

RESUMO

Gastrin-releasing peptide receptor (GRPR) is overexpressed in various cancers and is a promising target for cancer diagnosis and therapy. However, the high pancreas uptake and/or metabolic instability observed for most reported GRPR-targeted radioligands might limit their clinical applications. Our group recently reported a GRPR-targeted antagonist tracer, [68Ga]Ga-TacsBOMB2 ([68Ga]Ga-DOTA-Pip-D-Phe6-Gln7-Trp8-Ala9-Val10-Gly11-His12-Leu13ψThz14-NH2), which showed a minimal pancreas uptake in a preclinical mouse model. In this study, we synthesized four derivatives with unnatural amino acid substitutions (Tle10-derived Ga-LW01158, NMe-His12-derived Ga-LW01160, α-Me-Trp8- and Tle10-derived Ga-LW01186, and Tle10- and N-Me-Gly11-derived Ga-LW02002) and evaluated their potential for detecting GRPR-expressing tumors with positron emission tomography (PET). The binding affinities (Ki(GRPR)) of Ga-LW01158, Ga-LW01160, Ga-LW01186, and Ga-LW02002 were 5.11 ± 0.47, 187 ± 17.8, 6.94 ± 0.95, and 11.0 ± 0.39 nM, respectively. [68Ga]Ga-LW01158, [68Ga]Ga-LW01186, and [68Ga]Ga-LW02002 enabled clear visualization of subcutaneously implanted human prostate cancer PC-3 tumor xenografts in mice in PET images. Ex vivo biodistribution studies showed that [68Ga]Ga-LW01158 had the highest tumor uptake (11.2 ± 0.65 %ID/g) and good tumor-to-background uptake ratios at 1 h post-injection. Comparable in vivo stabilities were observed for [68Ga]Ga-LW01158, [68Ga]Ga-LW01186, and [68Ga]Ga-LW02002 (76.5-80.7% remaining intact in mouse plasma at 15 min post-injection). In summary, the Tle10 substitution, either alone or combined with α-Me-Trp8 or NMe-Gly11 substitution, in Ga-TacsBOMB2 generates derivatives that retained good GRPR binding affinity and in vivo stability. With good tumor uptake and tumor-to-background imaging contrast, [68Ga]Ga-LW01158 is promising for detecting GRPR-expressing lesions with PET.

14.
J Transl Med ; 22(1): 378, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649894

RESUMO

BACKGROUND: Bacteria-based cancer therapy have demonstrated innovative strategies to combat tumors. Recent studies have focused on gram-negative bacterial outer membrane vesicles (OMVs) as a novel cancer immunotherapy strategy due to its intrinsic properties as a versatile carrier. METHOD: Here, we developed an Human Papillomavirus (HPV)-associated E7 antigen displaying Salmonella-derived OMV vaccine, utilizing a Poly(L-arginine) cell penetrating peptide (CPP) to enhance HPV16 E7 (aa49-67) H-2 Db and OMV affinity, termed SOMV-9RE7. RESULTS: Due to OMV's intrinsic immunogenic properties, SOMV-9RE7 effectively activates adaptive immunity through antigen-presenting cell uptake and antigen cross-presentation. Vaccination of engineered OMVs shows immediate tumor suppression and recruitment of infiltrating tumor-reactive immune cells. CONCLUSION: The simplicity of the arginine coating strategy boasts the versatility of immuno-stimulating OMVs that can be broadly implemented to personalized bacterial immunotherapeutic applications.


Assuntos
Arginina , Vacinas Anticâncer , Proteínas E7 de Papillomavirus , Proteínas E7 de Papillomavirus/imunologia , Vacinas Anticâncer/imunologia , Humanos , Animais , Membrana Externa Bacteriana/imunologia , Camundongos Endogâmicos C57BL , Feminino
15.
iScience ; 27(3): 109277, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38455971

RESUMO

Tissue-resident memory T cells (TRM) are a specialized T cell population residing in peripheral tissues. The presence and potential impact of TRM in the tumor immune microenvironment (TIME) remain to be elucidated. Here, we systematically investigated the relationship between TRM and melanoma TIME based on multiple clinical single-cell RNA-seq datasets and developed signatures indicative of TRM infiltration. TRM infiltration is associated with longer overall survival and abundance of T cells, NK cells, M1 macrophages, and memory B cells in the TIME. A 22-gene TRM-derived risk score was further developed to effectively classify patients into low- and high-risk categories, distinguishing overall survival and immune activation, particularly in T cell-mediated responses. Altogether, our analysis suggests that TRM abundance is associated with melanoma TIME activation and patient survival, and the TRM-based machine learning model can potentially predict prognosis in melanoma patients.

16.
EJNMMI Radiopharm Chem ; 9(1): 8, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38305955

RESUMO

BACKGROUND: Overexpressed in various solid tumors, gastrin-releasing peptide receptor (GRPR) is a promising cancer imaging marker and therapeutic target. Although antagonists are preferable for the development of GRPR-targeted radiopharmaceuticals due to potentially fewer side effects, internalization of agonists may lead to longer tumor retention and better treatment efficacy. In this study, we systematically investigated unnatural amino acid substitutions to improve in vivo stability and tumor uptake of a previously reported GRPR-targeted agonist tracer, [68Ga]Ga-TacBOMB2 (68Ga-DOTA-Pip-D-Phe6-Gln7-Trp8-Ala9-Val10-Gly11-His12-Leu13-Thz14-NH2). RESULTS: Unnatural amino acid substitutions were conducted for Gln7, Trp8, Ala9, Val10, Gly11 and His12, either alone or in combination. Out of 25 unnatural amino acid substitutions, tert-Leu10 (Tle10) and NMe-His12 substitutions were identified to be preferable modifications especially in combination. Compared with the previously reported [68Ga]Ga-TacBOMB2, the Tle10 and NMe-His12 derived [68Ga]Ga-LW01110 showed retained agonist characteristics and improved GRPR binding affinity (Ki = 7.62 vs 1.39 nM), in vivo stability (12.7 vs 89.0% intact tracer in mouse plasma at 15 min post-injection) and tumor uptake (5.95 vs 16.6 %ID/g at 1 h post-injection). CONCLUSIONS: Unnatural amino acid substitution is an effective strategy to improve in vivo stability and tumor uptake of peptide-based radiopharmaceuticals. With excellent tumor uptake and tumor-to-background contrast, [68Ga]Ga-LW01110 is promising for detecting GRPR-expressing cancer lesions with PET. Since agonists can lead to internalization upon binding to receptors and foreseeable long tumor retention, our optimized GRPR-targeted sequence, [Tle10,NMe-His12,Thz14]Bombesin(7-14), is a promising template for use for the design of GRPR-targeted radiotherapeutic agents.

17.
Molecules ; 29(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38398552

RESUMO

Some bispecific radiotracers have been developed to overcome the limitations of monospecific tracers and improve detection sensitivity for heterogeneous tumor lesions. Here, we aim to synthesize two bispecific tracers targeting prostate-specific membrane antigen (PSMA) and fibroblast activation protein (FAP), which are key markers expressed in prostate cancer. A pyridine-based FAP-targeted ligand was synthesized through multi-step organic synthesis and then connected to the 2-Nal-containing PSMA-targeted motif. The Ki(PSMA) values of Ga-complexed bispecific ligands, Ga-AV01084 and Ga-AV01088, were 11.6 ± 3.25 and 28.7 ± 6.05 nM, respectively, and the IC50(FAP) values of Ga-AV01084 and Ga-AV01088 were 10.9 ± 0.67 and 16.7 ± 1.53 nM, respectively. Both [68Ga]Ga-AV01084 and [68Ga]Ga-AV01088 enabled the visualization of PSMA-expressing LNCaP tumor xenografts and FAP-expressing HEK293T:hFAP tumor xenografts in PET images acquired at 1 h post-injection. However, the tumor uptake values from the bispecific tracers were still lower than those obtained from the monospecific tracers, PSMA-targeted [68Ga]Ga-PSMA-617 and FAP-targeted [68Ga]Ga-AV02070. Further investigations are needed to optimize the selection of linkers and targeted pharmacophores to improve the tumor uptake of bispecific PSMA/FAP tracers for prostate cancer imaging.


Assuntos
Radioisótopos de Gálio , Neoplasias da Próstata , Masculino , Humanos , Células HEK293 , Farmacóforo , Compostos Radiofarmacêuticos/metabolismo , Neoplasias da Próstata/patologia , Piridinas , Tomografia por Emissão de Pósitrons , Linhagem Celular Tumoral
18.
Neuropsychopharmacology ; 49(6): 915-923, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38374364

RESUMO

Opioid use disorder is a chronic relapsing disorder encompassing misuse, dependence, and addiction to opioid drugs. Long term maintenance of associations between the reinforcing effects of the drug and the cues associated with its intake are a leading cause of relapse. Indeed, exposure to the salient drug-associated cues can lead to drug cravings and drug seeking behavior. The dorsal hippocampus (dHPC) and locus coeruleus (LC) have emerged as important structures for linking the subjective rewarding effects of opioids with environmental cues. However, their role in cue-induced reinstatement of opioid use remains to be further elucidated. In this study, we showed that chemogenetic inhibition of excitatory dHPC neurons during re-exposure to drug-associated cues significantly attenuates cue-induced reinstatement of morphine-seeking behavior. In addition, the same manipulation reduced reinstatement of sucrose-seeking behavior but failed to alter memory recall in the object location task. Finally, intact activity of tyrosine hydroxylase (TH) LC-dHPCTh afferents is necessary to drive cue induced reinstatement of morphine-seeking as inhibition of this pathway blunts cue-induced drug-seeking behavior. Altogether, these studies show an important role of the dHPC and LC-dHPCTh pathway in mediating cue-induced reinstatement of opioid seeking.


Assuntos
Sinais (Psicologia) , Comportamento de Procura de Droga , Hipocampo , Locus Cerúleo , Autoadministração , Animais , Locus Cerúleo/efeitos dos fármacos , Locus Cerúleo/metabolismo , Masculino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Ratos , Feminino , Comportamento de Procura de Droga/efeitos dos fármacos , Comportamento de Procura de Droga/fisiologia , Morfina/farmacologia , Morfina/administração & dosagem , Ratos Sprague-Dawley , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Analgésicos Opioides/farmacologia , Analgésicos Opioides/administração & dosagem , Transtornos Relacionados ao Uso de Opioides/fisiopatologia , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia
19.
Eur J Med Chem ; 268: 116238, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38367492

RESUMO

Fibroblast activation protein-α (FAP) is a marker of cancer-associated fibroblasts (CAFs) that constitute a significant portion of most carcinomas. Since it plays a critical role in tumor growth and metastasis, its timely detection to identify tumor lesions in early developmental stages using targeted radiopharmaceuticals has gained significant impetus. In the present work, two novel FAP-targeted precursors SB03178 and SB04033 comprising of an atypical benzo[h]quinoline construct were synthesized and either chelated to diagnostic radionuclide gallium-68 or therapeutic radionuclide lutetium-177, with ≥90% radiochemical purities and 22-76% decay-corrected radiochemical yields. natGa-labeled complexes displayed dose-dependent FAP inhibition, with binding potency of natGa-SB03178 being ∼17 times higher than natGa-SB04033. To evaluate their pharmacokinetic profiles, PET imaging and ex vivo biodistribution analyses were executed in FAP-overexpressing HEK293T:hFAP tumor-bearing mice. While both tracers displayed clear tumor visualization that was primarily FAP-arbitrated, with negligible uptake in most peripheral tissues, [68Ga]Ga-SB03178 demonstrated higher tumor uptake and superior tumor-to-background contrast ratios than [68Ga]Ga-SB04033. 177Lu-labeled SB03178 was subjected to tumor retention studies, mouse dosimetry profiling and mouse-to-human dose extrapolations also using the HEK293T:hFAP tumor model. [177Lu]Lu-SB03178 exhibited a combination of high and sustained tumor uptake, with excellent tumor-to-critical organ uptake ratios resulting in a high radiation absorbed dose to the tumor and a low estimated whole-body dose to humans. Our preliminary findings are considerably encouraging to support clinical development of [68Ga]Ga-/[177Lu]Lu-SB03178 theranostic pair for use in a vast majority of FAP-overexpressing neoplasms, particularly carcinomas.


Assuntos
Carcinoma , Endopeptidases , Proteínas de Membrana , Quinolinas , Humanos , Animais , Camundongos , Radioisótopos de Gálio , Distribuição Tecidual , Células HEK293 , Radioisótopos , Compostos Radiofarmacêuticos/farmacocinética , Quinolinas/química , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Linhagem Celular Tumoral
20.
Oncoimmunology ; 13(1): 2298444, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38170154

RESUMO

Bacteria-based cancer therapy employs various strategies to combat tumors, one of which is delivering tumor-associated antigen (TAA) to generate specific immunity. Here, we utilized a poly-arginine extended HPV E7 antigen (9RE7) for attachment on Salmonella SL7207 outer membrane to synthesize the bacterial vaccine Salmonella-9RE7 (Sal-9RE7), which yielded a significant improvement in the amount of antigen presentation compared to the previous lysine-extended antigen coating strategy. In TC-1 tumor mouse models, Sal-9RE7 monotherapy decreased tumor growth by inducing E7 antigen-specific immunity. In addition, pairing Sal-9RE7 with adjuvant Albumin-IFNß (Alb-IFNß), a protein cytokine fusion, the combination significantly increased the antitumor efficacy and enhanced immunogenicity in the tumor microenvironment (TME). Our study made a significant contribution to personalized bacterial immunotherapy via TAA delivery and demonstrated the advantage of combination therapy.


Assuntos
Interferon Tipo I , Neoplasias , Animais , Camundongos , Proteínas E7 de Papillomavirus/genética , Linfócitos T CD8-Positivos , Neoplasias/terapia , Antígenos de Neoplasias , Imunoterapia , Salmonella , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA