Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Clin Invest ; 133(3)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36719379

RESUMO

Signaling driven by nucleic acid sensors participates in interferonopathy-mediated autoimmune diseases. NLRP12, a pyrin-containing NLR protein, is a negative regulator of innate immune activation and type I interferon (IFN-I) production. Peripheral blood mononuclear cells (PBMCs) derived from systemic lupus erythematosus (SLE) patients expressed lower levels of NLRP12, with an inverse correlation with IFNA expression and high disease activity. NLRP12 expression was transcriptionally suppressed by runt-related transcription factor 1-dependent (RUNX1-dependent) epigenetic regulation under IFN-I treatment, which enhanced a negative feedback loop between low NLRP12 expression and IFN-I production. Reduced NLRP12 protein levels in SLE monocytes was linked to spontaneous activation of innate immune signaling and hyperresponsiveness to nucleic acid stimulations. Pristane-treated Nlrp12-/- mice exhibited augmented inflammation and immune responses; and substantial lymphoid hypertrophy was characterized in NLRP12-deficient lupus-prone mice. NLRP12 deficiency mediated the increase of autoantibody production, intensive glomerular IgG deposition, monocyte recruitment, and the deterioration of kidney function. These were bound in an IFN-I signature-dependent manner in the mouse models. Collectively, we reveal a remarkable link between low NLRP12 expression and lupus progression, which suggests the impact of NLRP12 on homeostasis and immune resilience.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Ácidos Nucleicos , Animais , Camundongos , Epigênese Genética , Imunidade Inata , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Leucócitos Mononucleares , Lúpus Eritematoso Sistêmico/genética , Interferons/metabolismo
3.
Cell Host Microbe ; 25(4): 602-616.e7, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30902577

RESUMO

Establishing the balance between positive and negative innate immune mechanisms is crucial for maintaining homeostasis. Here we uncover the regulatory crosstalk between two previously unlinked innate immune receptor families: RIG-I, an anti-viral cytosolic receptor activated type I interferon production, and NLR (nucleotide-binding domain, leucine repeat domain-containing protein). We show that NLRP12 dampens RIG-I-mediated immune signaling against RNA viruses by controlling RIG-I's association with its adaptor MAVS. The nucleotide-binding domain of NLRP12 interacts with the ubiquitin ligase TRIM25 to prevent TRIM25-mediated, Lys63-linked ubiquitination and activation of RIG-I. NLRP12 also enhances RNF125-mediated, Lys48-linked degradative ubiquitination of RIG-I. Vesicular stomatitis virus (VSV) infection downregulates NLRP12 expression to allow RIG-I activation. Myeloid-cell-specific Nlrp12-deficient mice display a heightened interferon and TNF response and are more resistant to VSV infection. These results indicate that NLRP12 functions as a checkpoint for anti-viral RIG-I activation.


Assuntos
Proteína DEAD-box 58/imunologia , Proteínas de Ligação a DNA/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Infecções por Vírus de RNA/imunologia , Vírus de RNA/fisiologia , Fatores de Transcrição/imunologia , Animais , Proteína DEAD-box 58/genética , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Interferons/genética , Interferons/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Infecções por Vírus de RNA/genética , Infecções por Vírus de RNA/virologia , Vírus de RNA/genética , Fatores de Transcrição/genética , Ubiquitinação
4.
Biotechnol Bioeng ; 116(5): 1190-1200, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30636318

RESUMO

Microenvironmental factors including physical and chemical cues can regulate stem cells as well as terminally differentiated cells to modulate their biological function and differentiation. However, one of the physical cues, the substrate's dimensionality, has not been studied extensively. In this study, the flow-focusing method with a microfluidic device was used to generate gelatin bubbles to fabricate highly ordered three-dimensional (3D) scaffolds. Rat H9c2 myoblasts were seeded into the 3D gelatin bubble-based scaffolds and compared to those grown on 2D gelatin-coating substrates to demonstrate the influences of spatial cues on cell behaviors. Relative to cells on the 2D substrates, the H9c2 myoblasts were featured by a good survival and normal mitochondrial activity but slower cell proliferation within the 3D scaffolds. The cortical actin filaments of H9c2 cells were localized close to the cell membrane when cultured on the 2D substrates, while the F-actins distributed uniformly and occupied most of the cell cytoplasm within the 3D scaffolds. H9c2 myoblasts fused as multinuclear myotubes within the 3D scaffolds without any induction but cells cultured on the 2D substrates had a relatively lower fusion index even differentiation medium was provided. Although there was no difference in actin α 1 and myosin heavy chain 1, H9c2 cells had a higher myogenin messenger RNA level in the 3D scaffolds than those of on the 2D substrates. This study reveals that the dimensionality influences differentiation and fusion of myoblasts.


Assuntos
Diferenciação Celular , Proliferação de Células , Gelatina/química , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , Alicerces Teciduais/química , Citoesqueleto de Actina/metabolismo , Animais , Fibras Musculares Esqueléticas/citologia , Mioblastos/citologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...