Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 269: 115799, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38070414

RESUMO

The expression of Cry proteins in genetically modified rice varieties safeguards the crop from lepidopteran pests. These proteins have the potential to be transferred through the food chain to arthropods like planthoppers and predatory spiders, triggering defensive responses in these unintended organisms. Hence, we hypothesized that Cry protein might influence the growth and development of spiders by altering protective enzyme activities. The results showed that Cry1Ab protein could accumulate in tissues and subcellular organelles of Pardosa pseudoannulata from Nilaparvata lugens. Cry1Ab protein exposure prolonged the developmental duration in the 5th and 7th instar spiderlings but induced no alterations of other growth indicators, such as body length, median ocular area, and survival rate. In addition, Cry1Ab protein exerted no adverse impacts on several detoxifying enzymes (i.e., superoxide dismutase, catalase, glutathione peroxidase, and acetylcholine esterase) in muscle, midgut, ganglia, and hemolymph at subcellular components (i.e., microsome and cytoplasm). To further explore the effects of Cry1Ab protein on the spiderlings, we performed an integrated transcriptome analysis on spiderlings exposed to Cry1Ab protein. The results showed that Cry1Ab protein might prolong the development duration of P. pseudoannulata via the altered cuticle metabolism (e.g., chitin metabolic process and structural constituent of cuticle). In addition, the gene expression profile associated with detoxifying enzymes and three stress-responsive pathways (JAK/STAT, JNK/SAPK, and Hippo pathways) also displayed no significant alterations under Cry1Ab exposure. Collectively, this integrated analysis generates multidimensional insights to assess the effects of Cry1Ab protein on non-target spiders and demonstrates that Cry1Ab protein exerts no toxicity in P. pseudoannulata.


Assuntos
Animais Peçonhentos , Hemípteros , Aranhas , Animais , Hemípteros/metabolismo , Superóxido Dismutase/metabolismo , Crescimento e Desenvolvimento
2.
Food Funct ; 14(11): 5105-5119, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37166164

RESUMO

Selenium (Se), a well-known antioxidant, is important for male fertility and sperm quality. The gut microbiota is involved in vital activities and cross-talk between reproduction and the gut axis. It is still unclear whether the gut microbiota mediates the impact of selenium on semen quality, and what the underlying mechanisms may be. A selenized glucose (SeGlu) derivative is a novel organic Se compound. After 7 days of acclimation, the Sprague-Dawley (SD) male rats (230 g, 6 weeks) were divided into three drinking groups: deionized water group (CK), SeGlu 0.15 group (0.15 mg Se per L), and SeGlu 0.4 group (0.4 mg Se per L). All animals were euthanized 30 days post-treatment. Serum and intratesticular testosterone and semen parameters were measured. Metagenomic and non-targeted metabolomic approaches were used to study the effects of SeGlu on the gut microbiota and serum metabolites of rats. In both the SeGlu 0.15 Group and the SeGlu 0.4 Group, we found a significant increase in seminiferous epithelium thickness. While the SeGlu 0.4 Group had a tendency to increase with insignificant difference, the SeGlu 0.15 Group significantly improved the sperm viability, survival rate, and seminal plasma fructose. SeGlu had no effect on intratesticular testosterone levels, or abnormal sperm counts. Measured serum testosterone levels using ELISA and LC-MS, which showed a decreasing trend. ELISA did not reveal significant differences, but LC-MS indicated a significant decrease in SeGlu 0.4 group. Meanwhile, the SeGlu 0.15 Group reduced the abundance of harmful bacteria such as Rikenella, Barnesiella, Tenacibaculum, and Aeromonas while increasing the abundance of beneficial microbiota such as Intestinimonas, Christensenella, Coprococcus, and Butyrivibrio. Linear discriminant analysis Effect Size (LEfSe) identified the SeGlu 0.15 group's feature genera as Roseburia, Clostridium, Ruminococcus, and Eubacterium. Serum metabolites showed that the SeGlu 0.15 Group increased 5 beta-androstane-3,17-dione while decreasing estrone and 2-methoxyestradiol (2-MeOE2). In conclusion, the SeGlu 0.15 Group can significantly alter the levels of several sex hormones in serum, improve the quality of rats' sperm, and reduce harmful bacterial colonization. SeGlu 0.15 may be used as an effective dietary supplement.


Assuntos
Microbioma Gastrointestinal , Selênio , Masculino , Ratos , Animais , Análise do Sêmen , Sêmen/metabolismo , Selênio/metabolismo , Glucose/metabolismo , Ratos Sprague-Dawley , Metaboloma , Testosterona
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...