Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(D1): D785-D791, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36350610

RESUMO

YEASTRACT+ (http://yeastract-plus.org/) is a tool for the analysis, prediction and modelling of transcription regulatory data at the gene and genomic levels in yeasts. It incorporates three integrated databases: YEASTRACT (http://yeastract-plus.org/yeastract/), PathoYeastract (http://yeastract-plus.org/pathoyeastract/) and NCYeastract (http://yeastract-plus.org/ncyeastract/), focused on Saccharomyces cerevisiae, pathogenic yeasts of the Candida genus, and non-conventional yeasts of biotechnological relevance. In this release, YEASTRACT+ offers upgraded information on transcription regulation for the ten previously incorporated yeast species, while extending the database to another pathogenic yeast, Candida auris. Since the last release of YEASTRACT+ (January 2020), a fourth database has been integrated. CommunityYeastract (http://yeastract-plus.org/community/) offers a platform for the creation, use, and future update of YEASTRACT-like databases for any yeast of the users' choice. CommunityYeastract currently provides information for two Saccharomyces boulardii strains, Rhodotorula toruloides NP11 oleaginous yeast, and Schizosaccharomyces pombe 972h-. In addition, YEASTRACT+ portal currently gathers 304 547 documented regulatory associations between transcription factors (TF) and target genes and 480 DNA binding sites, considering 2771 TFs from 11 yeast species. A new set of tools, currently implemented for S. cerevisiae and C. albicans, is further offered, combining regulatory information with genome-scale metabolic models to provide predictions on the most promising transcription factors to be exploited in cell factory optimisation or to be used as novel drug targets. The expansion of these new tools to the remaining YEASTRACT+ species is ongoing.


Assuntos
Software , Transcrição Gênica , Leveduras , Bases de Dados Genéticas , Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Leveduras/genética
2.
Brief Bioinform ; 23(4)2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35671510

RESUMO

Computational models are often employed in systems biology to study the dynamic behaviours of complex systems. With the rise in the number of computational models, finding ways to improve the reusability of these models and their ability to reproduce virtual experiments becomes critical. Correct and effective model annotation in community-supported and standardised formats is necessary for this improvement. Here, we present recent efforts toward a common framework for annotated, accessible, reproducible and interoperable computational models in biology, and discuss key challenges of the field.


Assuntos
Biologia Computacional , Biologia de Sistemas , Simulação por Computador , Reprodutibilidade dos Testes
3.
Bioinformatics ; 37(21): 3702-3706, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34179955

RESUMO

Computational models of biological systems can exploit a broad range of rapidly developing approaches, including novel experimental approaches, bioinformatics data analysis, emerging modelling paradigms, data standards and algorithms. A discussion about the most recent advances among experts from various domains is crucial to foster data-driven computational modelling and its growing use in assessing and predicting the behaviour of biological systems. Intending to encourage the development of tools, approaches and predictive models, and to deepen our understanding of biological systems, the Community of Special Interest (COSI) was launched in Computational Modelling of Biological Systems (SysMod) in 2016. SysMod's main activity is an annual meeting at the Intelligent Systems for Molecular Biology (ISMB) conference, which brings together computer scientists, biologists, mathematicians, engineers, computational and systems biologists. In the five years since its inception, SysMod has evolved into a dynamic and expanding community, as the increasing number of contributions and participants illustrate. SysMod maintains several online resources to facilitate interaction among the community members, including an online forum, a calendar of relevant meetings and a YouTube channel with talks and lectures of interest for the modelling community. For more than half a decade, the growing interest in computational systems modelling and multi-scale data integration has inspired and supported the SysMod community. Its members get progressively more involved and actively contribute to the annual COSI meeting and several related community workshops and meetings, focusing on specific topics, including particular techniques for computational modelling or standardisation efforts.


Assuntos
Biologia Computacional , Biologia de Sistemas , Humanos , Simulação por Computador , Algoritmos , Análise de Dados
4.
Int J Mol Sci ; 22(9)2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-34063110

RESUMO

The multistep development of cancer involves the cooperation between multiple molecular lesions, as well as complex interactions between cancer cells and the surrounding tumour microenvironment. The search for these synergistic interactions using experimental models made tremendous contributions to our understanding of oncogenesis. Yet, these approaches remain labour-intensive and challenging. To tackle such a hurdle, an integrative, multidisciplinary effort is required. In this article, we highlight the use of logical computational models, combined with experimental validations, as an effective approach to identify cooperative mechanisms and therapeutic strategies in the context of cancer biology. In silico models overcome limitations of reductionist approaches by capturing tumour complexity and by generating powerful testable hypotheses. We review representative examples of logical models reported in the literature and their validation. We then provide further analyses of our logical model of Epithelium to Mesenchymal Transition (EMT), searching for additional cooperative interactions involving inputs from the tumour microenvironment and gain of function mutations in NOTCH.


Assuntos
Simulação por Computador , Lógica , Modelos Biológicos , Neoplasias/patologia , Animais , Carcinogênese/metabolismo , Carcinogênese/patologia , Transição Epitelial-Mesenquimal , Humanos , Microambiente Tumoral
5.
Brief Bioinform ; 22(2): 1848-1859, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-32313939

RESUMO

The fast accumulation of biological data calls for their integration, analysis and exploitation through more systematic approaches. The generation of novel, relevant hypotheses from this enormous quantity of data remains challenging. Logical models have long been used to answer a variety of questions regarding the dynamical behaviours of regulatory networks. As the number of published logical models increases, there is a pressing need for systematic model annotation, referencing and curation in community-supported and standardised formats. This article summarises the key topics and future directions of a meeting entitled 'Annotation and curation of computational models in biology', organised as part of the 2019 [BC]2 conference. The purpose of the meeting was to develop and drive forward a plan towards the standardised annotation of logical models, review and connect various ongoing projects of experts from different communities involved in the modelling and annotation of molecular biological entities, interactions, pathways and models. This article defines a roadmap towards the annotation and curation of logical models, including milestones for best practices and minimum standard requirements.


Assuntos
Biologia Computacional/métodos , Modelos Biológicos , Guias de Prática Clínica como Assunto , Reprodutibilidade dos Testes
6.
Bioinformatics ; 36(24): 5712-5718, 2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-32637990

RESUMO

MOTIVATION: A large variety of molecular interactions occurs between biomolecular components in cells. When a molecular interaction results in a regulatory effect, exerted by one component onto a downstream component, a so-called 'causal interaction' takes place. Causal interactions constitute the building blocks in our understanding of larger regulatory networks in cells. These causal interactions and the biological processes they enable (e.g. gene regulation) need to be described with a careful appreciation of the underlying molecular reactions. A proper description of this information enables archiving, sharing and reuse by humans and for automated computational processing. Various representations of causal relationships between biological components are currently used in a variety of resources. RESULTS: Here, we propose a checklist that accommodates current representations, called the Minimum Information about a Molecular Interaction CAusal STatement (MI2CAST). This checklist defines both the required core information, as well as a comprehensive set of other contextual details valuable to the end user and relevant for reusing and reproducing causal molecular interaction information. The MI2CAST checklist can be used as reporting guidelines when annotating and curating causal statements, while fostering uniformity and interoperability of the data across resources. AVAILABILITY AND IMPLEMENTATION: The checklist together with examples is accessible at https://github.com/MI2CAST/MI2CAST. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Software , Causalidade , Humanos
7.
Sci Rep ; 10(1): 17744, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33082399

RESUMO

The capacity of living cells to adapt to different environmental, sometimes adverse, conditions is achieved through differential gene expression, which in turn is controlled by a highly complex transcriptional network. We recovered the full network of transcriptional regulatory associations currently known for Saccharomyces cerevisiae, as gathered in the latest release of the YEASTRACT database. We assessed topological features of this network filtered by the kind of supporting evidence and of previously published networks. It appears that in-degree distribution, as well as motif enrichment evolve as the yeast transcriptional network is being completed. Overall, our analyses challenged some results previously published and confirmed others. These analyses further pointed towards the paucity of experimental evidence to support theories and, more generally, towards the partial knowledge of the complete network.


Assuntos
Redes Reguladoras de Genes/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Bases de Dados Genéticas , Regulação Fúngica da Expressão Gênica , Transcrição Gênica
8.
Mol Syst Biol ; 16(8): e9110, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32845085

RESUMO

Systems biology has experienced dramatic growth in the number, size, and complexity of computational models. To reproduce simulation results and reuse models, researchers must exchange unambiguous model descriptions. We review the latest edition of the Systems Biology Markup Language (SBML), a format designed for this purpose. A community of modelers and software authors developed SBML Level 3 over the past decade. Its modular form consists of a core suited to representing reaction-based models and packages that extend the core with features suited to other model types including constraint-based models, reaction-diffusion models, logical network models, and rule-based models. The format leverages two decades of SBML and a rich software ecosystem that transformed how systems biologists build and interact with models. More recently, the rise of multiscale models of whole cells and organs, and new data sources such as single-cell measurements and live imaging, has precipitated new ways of integrating data with models. We provide our perspectives on the challenges presented by these developments and how SBML Level 3 provides the foundation needed to support this evolution.


Assuntos
Biologia de Sistemas/métodos , Animais , Humanos , Modelos Logísticos , Modelos Biológicos , Software
9.
Cancer Res ; 80(11): 2407-2420, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32217696

RESUMO

Epithelial-to-mesenchymal transition (EMT) has been associated with cancer cell heterogeneity, plasticity, and metastasis. However, the extrinsic signals supervising these phenotypic transitions remain elusive. To assess how selected microenvironmental signals control cancer-associated phenotypes along the EMT continuum, we defined a logical model of the EMT cellular network that yields qualitative degrees of cell adhesions by adherens junctions and focal adhesions, two features affected during EMT. The model attractors recovered epithelial, mesenchymal, and hybrid phenotypes. Simulations showed that hybrid phenotypes may arise through independent molecular paths involving stringent extrinsic signals. Of particular interest, model predictions and their experimental validations indicated that: (i) stiffening of the extracellular matrix was a prerequisite for cells overactivating FAK_SRC to upregulate SNAIL and acquire a mesenchymal phenotype and (ii) FAK_SRC inhibition of cell-cell contacts through the receptor-type tyrosine-protein phosphatases kappa led to acquisition of a full mesenchymal, rather than a hybrid, phenotype. Altogether, these computational and experimental approaches allow assessment of critical microenvironmental signals controlling hybrid EMT phenotypes and indicate that EMT involves multiple molecular programs. SIGNIFICANCE: A multidisciplinary study sheds light on microenvironmental signals controlling cancer cell plasticity along EMT and suggests that hybrid and mesenchymal phenotypes arise through independent molecular paths.


Assuntos
Transição Epitelial-Mesenquimal , Modelos Biológicos , Neoplasias/patologia , Microambiente Tumoral , Animais , Adesão Celular , Linhagem Celular Tumoral , Simulação por Computador , Cães , Humanos , Células Madin Darby de Rim Canino , Fenótipo
10.
J Integr Bioinform ; 16(2)2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31219795

RESUMO

Computational models can help researchers to interpret data, understand biological functions, and make quantitative predictions. The Systems Biology Markup Language (SBML) is a file format for representing computational models in a declarative form that different software systems can exchange. SBML is oriented towards describing biological processes of the sort common in research on a number of topics, including metabolic pathways, cell signaling pathways, and many others. By supporting SBML as an input/output format, different tools can all operate on an identical representation of a model, removing opportunities for translation errors and assuring a common starting point for analyses and simulations. This document provides the specification for Release 2 of Version 2 of SBML Level 3 Core. The specification defines the data structures prescribed by SBML as well as their encoding in XML, the eXtensible Markup Language. Release 2 corrects some errors and clarifies some ambiguities discovered in Release 1. This specification also defines validation rules that determine the validity of an SBML document, and provides many examples of models in SBML form. Other materials and software are available from the SBML project website at http://sbml.org/.


Assuntos
Simulação por Computador , Modelos Biológicos , Linguagens de Programação , Biologia de Sistemas
11.
Front Physiol ; 9: 1161, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30245634

RESUMO

Logical models are well-suited to capture salient dynamical properties of regulatory networks. For networks controlling cell fate decisions, cell fates are associated with model attractors (stable states or cyclic attractors) whose identification and reachability properties are particularly relevant. While synchronous updates assume unlikely instantaneous or identical rates associated with component changes, the consideration of asynchronous updates is more realistic but, for large models, may hinder the analysis of the resulting non-deterministic concurrent dynamics. This complexity hampers the study of asymptotical behaviors, and most existing approaches suffer from efficiency bottlenecks, being generally unable to handle cyclical attractors and quantify attractor reachability. Here, we propose two algorithms providing probability estimates of attractor reachability in asynchronous dynamics. The first algorithm, named Firefront, exhaustively explores the state space from an initial state, and provides quasi-exact evaluations of the reachability probabilities of model attractors. The algorithm progresses in breadth, propagating the probabilities of each encountered state to its successors. Second, Avatar is an adapted Monte Carlo approach, better suited for models with large and intertwined transient and terminal cycles. Avatar iteratively explores the state space by randomly selecting trajectories and by using these random walks to estimate the likelihood of reaching an attractor. Unlike Monte Carlo simulations, Avatar is equipped to avoid getting trapped in transient cycles and to identify cyclic attractors. Firefront and Avatar are validated and compared to related methods, using as test cases logical models of synthetic and biological networks. Both algorithms are implemented as new functionalities of GINsim 3.0, a well-established software tool for logical modeling, providing executable GUI, Java API, and scripting facilities.

13.
Front Physiol ; 9: 646, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29971008

RESUMO

The logical formalism is well adapted to model large cellular networks, in particular when detailed kinetic data are scarce. This tutorial focuses on this well-established qualitative framework. Relying on GINsim (release 3.0), a software implementing this formalism, we guide the reader step by step toward the definition, the analysis and the simulation of a four-node model of the mammalian p53-Mdm2 network.

14.
Front Physiol ; 9: 680, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29971009

RESUMO

Analysing models of biological networks typically relies on workflows in which different software tools with sensitive parameters are chained together, many times with additional manual steps. The accessibility and reproducibility of such workflows is challenging, as publications often overlook analysis details, and because some of these tools may be difficult to install, and/or have a steep learning curve. The CoLoMoTo Interactive Notebook provides a unified environment to edit, execute, share, and reproduce analyses of qualitative models of biological networks. This framework combines the power of different technologies to ensure repeatability and to reduce users' learning curve of these technologies. The framework is distributed as a Docker image with the tools ready to be run without any installation step besides Docker, and is available on Linux, macOS, and Microsoft Windows. The embedded computational workflows are edited with a Jupyter web interface, enabling the inclusion of textual annotations, along with the explicit code to execute, as well as the visualization of the results. The resulting notebook files can then be shared and re-executed in the same environment. To date, the CoLoMoTo Interactive Notebook provides access to the software tools GINsim, BioLQM, Pint, MaBoSS, and Cell Collective, for the modeling and analysis of Boolean and multi-valued networks. More tools will be included in the future. We developed a Python interface for each of these tools to offer a seamless integration in the Jupyter web interface and ease the chaining of complementary analyses.

15.
J R Soc Interface ; 15(142)2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29792308

RESUMO

In the chicken, sex determination relies on a ZZ (male)/ZW (female) chromosomal system, but underlying mechanisms are still not fully understood. The Z-dosage and the dominant W-chromosome hypotheses have been proposed to underlie primary sex determination. We present a modelling approach, which assembles the current knowledge and permits exploration of the regulation of this process in chickens. Relying on published experimental data, we assembled a gene network, which led to a logical model that integrates both the Z-dosage and dominant W hypotheses. This model showed that the sexual fate of chicken gonads results from the resolution of the mutual inhibition between DMRT1 and FOXL2, where the initial amount of DMRT1 product determines the development of the gonads. In this respect, at the initiation step, a W-factor would function as a secondary device, by reducing the amount of DMRT1 in ZW gonads when the sexual fate of the gonad is settled, that is when the SOX9 functional level is established. Developmental constraints that are instrumental in this resolution were identified. These constraints establish qualitative restrictions regarding the relative transcription rates of the genes DMRT1, FOXL2 and HEMGN. Our model further clarified the role of OESTROGEN in maintaining FOXL2 function during ovary development.


Assuntos
Galinhas/fisiologia , Redes Reguladoras de Genes/fisiologia , Gônadas/embriologia , Modelos Biológicos , Cromossomos Sexuais/patologia , Processos de Determinação Sexual/fisiologia , Animais , Proteínas Aviárias/biossíntese , Feminino , Proteína Forkhead Box L2/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Fatores de Transcrição/biossíntese
16.
F1000Res ; 7: 1145, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30363398

RESUMO

Cellular responses are governed by regulatory networks subject to external signals from surrounding cells and to other micro-environmental cues. The logical (Boolean or multi-valued)  framework proved well suited to study such processes at the cellular level, by specifying qualitative models of involved signalling pathways and gene regulatory networks.  Here, we describe and illustrate the main features of EpiLog, a computational tool that implements an extension of the logical framework to the tissue level. EpiLog defines a collection of hexagonal cells over a 2D grid, which embodies a mono-layer epithelium. Basically, it defines a cellular automaton in which cell behaviours are driven by associated logical models subject to external signals.  EpiLog is freely available on the web at http://epilog-tool.org. It is implemented in Java (version ≥1.7 required) and the source code is provided at https://github.com/epilog-tool/epilog under a GNU General Public License v3.0.


Assuntos
Células Epiteliais/metabolismo , Redes Reguladoras de Genes , Modelos Biológicos , Transdução de Sinais , Software , Biologia de Sistemas , Animais , Células Epiteliais/citologia , Epitélio/metabolismo , Humanos
17.
Front Genet ; 7: 94, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27303434

RESUMO

The logical (or logic) formalism is increasingly used to model regulatory and signaling networks. Complementing these applications, several groups contributed various methods and tools to support the definition and analysis of logical models. After an introduction to the logical modeling framework and to several of its variants, we review here a number of recent methodological advances to ease the analysis of large and intricate networks. In particular, we survey approaches to determine model attractors and their reachability properties, to assess the dynamical impact of variations of external signals, and to consistently reduce large models. To illustrate these developments, we further consider several published logical models for two important biological processes, namely the differentiation of T helper cells and the control of mammalian cell cycle.

18.
BMC Syst Biol ; 10(1): 37, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27229461

RESUMO

BACKGROUND: Primary sex determination in placental mammals is a very well studied developmental process. Here, we aim to investigate the currently established scenario and to assess its adequacy to fully recover the observed phenotypes, in the wild type and perturbed situations. Computational modelling allows clarifying network dynamics, elucidating crucial temporal constrains as well as interplay between core regulatory modules. RESULTS: Relying on a comprehensive revision of the literature, we define a logical model that integrates the current knowledge of the regulatory network controlling this developmental process. Our analysis indicates the necessity for some genes to operate at distinct functional thresholds and for specific developmental conditions to ensure the reproducibility of the sexual pathways followed by bi-potential gonads developing into either testes or ovaries. Our model thus allows studying the dynamics of wild type and mutant XX and XY gonads. Furthermore, the model analysis reveals that the gonad sexual fate results from the operation of two sub-networks associated respectively with an initiation and a maintenance phases. At the core of the process is the resolution of two connected feedback loops: the mutual inhibition of Sox9 and ß-catenin at the initiation phase, which in turn affects the mutual inhibition between Dmrt1 and Foxl2, at the maintenance phase. Three developmental signals related to the temporal activity of those sub-networks are required: a signal that determines Sry activation, marking the beginning of the initiation phase, and two further signals that define the transition from the initiation to the maintenance phases, by inhibiting the Wnt4 signalling pathway on the one hand, and by activating Foxl2 on the other hand. CONCLUSIONS: Our model reproduces a wide range of experimental data reported for the development of wild type and mutant gonads. It also provides a formal support to crucial aspects of the gonad sexual development and predicts gonadal phenotypes for mutations not tested yet.


Assuntos
Células da Granulosa/citologia , Mamíferos/crescimento & desenvolvimento , Mamíferos/genética , Modelos Biológicos , Placenta , Células de Sertoli/citologia , Processos de Determinação Sexual , Animais , Diferenciação Celular , Feminino , Masculino , Mutação , Gravidez
19.
J Integr Bioinform ; 12(2): 270, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26528568

RESUMO

Quantitative methods for modelling biological networks require an in-depth knowledge of the biochemical reactions and their stoichiometric and kinetic parameters. In many practical cases, this knowledge is missing. This has led to the development of several qualitative modelling methods using information such as, for example, gene expression data coming from functional genomic experiments. The SBML Level 3 Version 1 Core specification does not provide a mechanism for explicitly encoding qualitative models, but it does provide a mechanism for SBML packages to extend the Core specification and add additional syntactical constructs. The SBML Qualitative Models package for SBML Level 3 adds features so that qualitative models can be directly and explicitly encoded. The approach taken in this package is essentially based on the definition of regulatory or influence graphs. The SBML Qualitative Models package defines the structure and syntax necessary to describe qualitative models that associate discrete levels of activities with entity pools and the transitions between states that describe the processes involved. This is particularly suited to logical models (Boolean or multi-valued) and some classes of Petri net models can be encoded with the approach.


Assuntos
Gráficos por Computador/normas , Modelos Biológicos , Linguagens de Programação , Proteoma/metabolismo , Transdução de Sinais/fisiologia , Biologia de Sistemas/normas , Animais , Ontologias Biológicas , Conjuntos de Dados como Assunto/normas , Documentação/normas , Guias como Assunto/normas , Humanos , Armazenamento e Recuperação da Informação/normas , Internacionalidade
20.
Cancer Res ; 75(19): 4042-52, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26238783

RESUMO

Relationships between genetic alterations, such as co-occurrence or mutual exclusivity, are often observed in cancer, where their understanding may provide new insights into etiology and clinical management. In this study, we combined statistical analyses and computational modeling to explain patterns of genetic alterations seen in 178 patients with bladder tumors (either muscle-invasive or non-muscle-invasive). A statistical analysis on frequently altered genes identified pair associations, including co-occurrence or mutual exclusivity. Focusing on genetic alterations of protein-coding genes involved in growth factor receptor signaling, cell cycle, and apoptosis entry, we complemented this analysis with a literature search to focus on nine pairs of genetic alterations of our dataset, with subsequent verification in three other datasets available publicly. To understand the reasons and contexts of these patterns of associations while accounting for the dynamics of associated signaling pathways, we built a logical model. This model was validated first on published mutant mice data, then used to study patterns and to draw conclusions on counter-intuitive observations, allowing one to formulate predictions about conditions where combining genetic alterations benefits tumorigenesis. For example, while CDKN2A homozygous deletions occur in a context of FGFR3-activating mutations, our model suggests that additional PIK3CA mutation or p21CIP deletion would greatly favor invasiveness. Furthermore, the model sheds light on the temporal orders of gene alterations, for example, showing how mutual exclusivity of FGFR3 and TP53 mutations is interpretable if FGFR3 is mutated first. Overall, our work shows how to predict combinations of the major gene alterations leading to invasiveness through two main progression pathways in bladder cancer.


Assuntos
Carcinoma de Células de Transição/genética , Transformação Celular Neoplásica/genética , Redes Reguladoras de Genes , Genes Neoplásicos , Modelos Genéticos , Mutação , Neoplasias da Bexiga Urinária/genética , Animais , Carcinoma de Células de Transição/etiologia , Carcinoma de Células de Transição/patologia , Hibridização Genômica Comparativa , Conjuntos de Dados como Assunto/estatística & dados numéricos , Epistasia Genética , Deleção de Genes , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiologia , Fenótipo , Probabilidade , Neoplasias da Bexiga Urinária/etiologia , Neoplasias da Bexiga Urinária/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...