Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 11232, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37433813

RESUMO

A simple power law has been proposed in the pioneering work of Klotz et al. (Am J Physiol Heart Circ Physiol 291(1):H403-H412, 2006) to approximate the end-diastolic pressure-volume relationship of the left cardiac ventricle, with limited inter-individual variability provided the volume is adequately normalized. Nevertheless, we use here a biomechanical model to investigate the sources of the remaining data dispersion observed in the normalized space, and we show that variations of the parameters of the biomechanical model realistically account for a substantial part of this dispersion. We therefore propose an alternative law based on the biomechanical model that embeds some intrinsic physical parameters, which directly enables personalization capabilities, and paves the way for related estimation approaches.


Assuntos
Ventrículos do Coração , Pacientes , Humanos , Fenômenos Biomecânicos , Pressão Sanguínea , Calibragem
2.
Int J Numer Method Biomed Eng ; 39(11): e3711, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37203282

RESUMO

Biomechanical modeling and simulation is expected to play a significant role in the development of the next generation tools in many fields of medicine. However, full-order finite element models of complex organs such as the heart can be computationally very expensive, thus limiting their practical usability. Therefore, reduced models are much valuable to be used, for example, for pre-calibration of full-order models, fast predictions, real-time applications, and so forth. In this work, focused on the left ventricle, we develop a reduced model by defining reduced geometry & kinematics while keeping general motion and behavior laws, allowing to derive a reduced model where all variables & parameters have a strong physical meaning. More specifically, we propose a reduced ventricular model based on cylindrical geometry & kinematics, which allows to describe the myofiber orientation through the ventricular wall and to represent contraction patterns such as ventricular twist, two important features of ventricular mechanics. Our model is based on the original cylindrical model of Guccione, McCulloch, & Waldman (1991); Guccione, Waldman, & McCulloch (1993), albeit with multiple differences: we propose a fully dynamical formulation, integrated into an open-loop lumped circulation model, and based on a material behavior that incorporates a fine description of contraction mechanisms; moreover, the issue of the cylinder closure has been completely reformulated; our numerical approach is novel aswell, with consistent spatial (finite element) and time discretizations. Finally, we analyze the sensitivity of the model response to various numerical and physical parameters, and study its physiological response.


Assuntos
Ventrículos do Coração , Coração , Coração/fisiologia , Fenômenos Biomecânicos , Modelos Cardiovasculares , Simulação por Computador , Análise de Elementos Finitos
4.
Int J Numer Method Biomed Eng ; 38(12): e3655, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36210493

RESUMO

Muscle contraction is triggered by the activation of the actin sites of the thin filament by calcium ions. It results that the thin filament activation level varies over time. Moreover, this activation process is also used as a regulation mechanism of the developed force. Our objective is to build a model of varying actin site activation level within the classical Huxley'57 two-state framework. This new model is obtained as an enhancement of a previously proposed formulation of the varying thick filament activation within the same framework. We assume that the state of an actin site depends on whether it is activated and whether it forms a cross-bridge with the associated myosin head, which results in four possible states. The transitions between the actin site states are controlled by the global actin sites activation level and the dynamics of these transitions is coupled with the attachment-detachment process. A preliminary calibration of the model with experimental twitch contraction data obtained at varying sarcomere lengths is performed.


Assuntos
Actinas , Sarcômeros , Sarcômeros/fisiologia , Citoesqueleto de Actina , Contração Muscular/fisiologia , Cálcio
5.
J Biomech Eng ; 144(9)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35292805

RESUMO

Pulmonary function is tightly linked to the lung mechanical behavior, especially large deformation during breathing. Interstitial lung diseases, such as idiopathic pulmonary fibrosis (IPF), have an impact on the pulmonary mechanics and consequently alter lung function. However, IPF remains poorly understood, poorly diagnosed, and poorly treated. Currently, the mechanical impact of such diseases is assessed by pressure-volume curves, giving only global information. We developed a poromechanical model of the lung that can be personalized to a patient based on routine clinical data. The personalization pipeline uses clinical data, mainly computed tomography (CT) images at two time steps and involves the formulation of an inverse problem to estimate regional compliances. The estimation problem can be formulated both in terms of "effective", i.e., without considering the mixture porosity, or "rescaled," i.e., where the first-order effect of the porosity has been taken into account, compliances. Regional compliances are estimated for one control subject and three IPF patients, allowing to quantify the IPF-induced tissue stiffening. This personalized model could be used in the clinic as an objective and quantitative tool for IPF diagnosis.


Assuntos
Fibrose Pulmonar Idiopática , Humanos , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Tomografia Computadorizada por Raios X
7.
Biomech Model Mechanobiol ; 21(2): 527-551, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35072891

RESUMO

The lung vital function of providing oxygen to the body heavily relies on its mechanical behavior and the interaction with its complex environment. In particular, the large compliance and the porosity of the pulmonary tissue are critical for lung inflation and air inhalation, and the diaphragm, the pleura, the rib cage and intercostal muscles all play a role in delivering and controlling the breathing driving forces. In this paper, we introduce a novel poromechanical model of the lungs. The constitutive law is derived within a general poromechanics theory via the formulation of lung-specific assumptions, leading to a hyperelastic potential reproducing the volume response of the pulmonary mixture to a change of pressure. Moreover, physiological boundary conditions are formulated to account for the interaction of the lungs with their surroundings, including a following pressure and bilateral frictionless contact. A strategy is established to estimate the unloaded configuration from a given loaded state, with a particular focus on ensuring a positive porosity. Finally, we illustrate through several realistic examples the relevance of our model and its potential clinical applications.


Assuntos
Pulmão , Respiração , Diafragma/fisiologia
8.
Ann Biomed Eng ; 49(12): 3339-3348, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34853921

RESUMO

Clinical indicators of heart function are often limited in their ability to accurately evaluate the current mechanical state of the myocardium. Biomechanical modeling has been shown to be a promising tool in addition to clinical indicators. By providing a patient-specific measure of myocardial active stress (contractility), biomechanical modeling can enhance the precision of the description of patient's pathophysiology at any given point in time. In this work we aim to explore the ability of biomechanical modeling to predict the response of ventricular mechanics to the progressively decreasing afterload in repaired tetralogy of Fallot (rTOF) patients undergoing pulmonary valve replacement (PVR) for significant residual right ventricular outflow tract obstruction (RVOTO). We used 19 patient-specific models of patients with rTOF prior to pulmonary valve replacement (PVR), denoted as PSMpre, and patient-specific models of the same patients created post-PVR (PSMpost)-both created in our previous published work. Using the PSMpre and assuming cessation of the pulmonary regurgitation and a progressive decrease of RVOT resistance, we built relationships between the contractility and RVOT resistance post-PVR. The predictive value of such in silico obtained relationships were tested against the PSMpost, i.e. the models created from the actual post-PVR datasets. Our results show a linear 1-dimensional relationship between the in silico predicted contractility post-PVR and the RVOT resistance. The predicted contractility was close to the contractility in the PSMpost model with a mean (± SD) difference of 6.5 (± 3.0)%. The relationships between the contractility predicted by in silico PVR vs. RVOT resistance have a potential to inform clinicians about hypothetical mechanical response of the ventricle based on the degree of pre-operative RVOTO.


Assuntos
Complicações Pós-Operatórias/fisiopatologia , Complicações Pós-Operatórias/cirurgia , Medicina de Precisão , Valva Pulmonar/cirurgia , Obstrução do Fluxo Ventricular Externo/fisiopatologia , Obstrução do Fluxo Ventricular Externo/cirurgia , Fenômenos Biomecânicos , Implante de Prótese de Valva Cardíaca , Humanos , Modelos Cardiovasculares , Valor Preditivo dos Testes , Tetralogia de Fallot/cirurgia , Remodelação Ventricular
9.
Can J Cardiol ; 37(11): 1798-1807, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34216743

RESUMO

BACKGROUND: A biomechanical model of the heart can be used to incorporate multiple data sources (electrocardiography, imaging, invasive hemodynamics). The purpose of this study was to use this approach in a cohort of patients with tetralogy of Fallot after complete repair (rTOF) to assess comparative influences of residual right ventricular outflow tract obstruction (RVOTO) and pulmonary regurgitation on ventricular health. METHODS: Twenty patients with rTOF who underwent percutaneous pulmonary valve replacement (PVR) and cardiovascular magnetic resonance imaging were included in this retrospective study. Biomechanical models specific to individual patient and physiology (before and after PVR) were created and used to estimate the RV myocardial contractility. The ability of models to capture post-PVR changes of right ventricular (RV) end-diastolic volume (EDV) and effective flow in the pulmonary artery (Qeff) was also compared with expected values. RESULTS: RV contractility before PVR (mean 66 ± 16 kPa, mean ± standard deviation) was increased in patients with rTOF compared with normal RV (38-48 kPa) (P < 0.05). The contractility decreased significantly in all patients after PVR (P < 0.05). Patients with predominantly RVOTO demonstrated greater reduction in contractility (median decrease 35%) after PVR than those with predominant pulmonary regurgitation (median decrease 11%). The model simulated post-PVR decreased EDV for the majority and suggested an increase of Qeff-both in line with published data. CONCLUSIONS: This study used a biomechanical model to synthesize multiple clinical inputs and give an insight into RV health. Individualized modeling allows us to predict the RV response to PVR. Initial data suggest that residual RVOTO imposes greater ventricular work than isolated pulmonary regurgitation.


Assuntos
Anormalidades Múltiplas , Procedimentos Cirúrgicos Cardíacos/métodos , Implante de Prótese de Valva Cardíaca/métodos , Hemodinâmica/fisiologia , Modelos Biológicos , Insuficiência da Valva Pulmonar/cirurgia , Tetralogia de Fallot/cirurgia , Adulto , Feminino , Seguimentos , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/fisiopatologia , Humanos , Imagem Cinética por Ressonância Magnética , Masculino , Valva Pulmonar/anormalidades , Valva Pulmonar/diagnóstico por imagem , Valva Pulmonar/cirurgia , Insuficiência da Valva Pulmonar/congênito , Insuficiência da Valva Pulmonar/diagnóstico , Reoperação , Estudos Retrospectivos
10.
Int J Numer Method Biomed Eng ; 37(7): e3471, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33913623

RESUMO

We propose a method to discover differential equations describing the long-term dynamics of phenomena featuring a multiscale behavior in time, starting from measurements taken at the fast-scale. Our methodology is based on a synergetic combination of data assimilation (DA), used to estimate the parameters associated with the known fast-scale dynamics, and machine learning (ML), used to infer the laws underlying the slow-scale dynamics. Specifically, by exploiting the scale separation between the fast and the slow dynamics, we propose a decoupling of time scales that allows to drastically lower the computational burden. Then, we propose a ML algorithm that learns a parametric mathematical model from a collection of time series coming from the phenomenon to be modeled. Moreover, we study the interpretability of the data-driven models obtained within the black-box learning framework proposed in this paper. In particular, we show that every model can be rewritten in infinitely many different equivalent ways, thus making intrinsically ill-posed the problem of learning a parametric differential equation starting from time series. Hence, we propose a strategy that allows to select a unique representative model in each equivalence class, thus enhancing the interpretability of the results. We demonstrate the effectiveness and noise-robustness of the proposed methods through several test cases, in which we reconstruct several differential models starting from time series generated through the models themselves. Finally, we show the results obtained for a test case in the cardiovascular modeling context, which sheds light on a promising field of application of the proposed methods.


Assuntos
Algoritmos , Aprendizado de Máquina , Modelos Teóricos
11.
PLoS One ; 15(5): e0232830, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32407353

RESUMO

During general anesthesia (GA), direct analysis of arterial pressure or aortic flow waveforms may be inconclusive in complex situations. Patient-specific biomechanical models, based on data obtained during GA and capable to perform fast simulations of cardiac cycles, have the potential to augment hemodynamic monitoring. Such models allow to simulate Pressure-Volume (PV) loops and estimate functional indicators of cardiovascular (CV) system, e.g. ventricular-arterial coupling (Vva), cardiac efficiency (CE) or myocardial contractility, evolving throughout GA. In this prospective observational study, we created patient-specific biomechanical models of heart and vasculature of a reduced geometric complexity for n = 45 patients undergoing GA, while using transthoracic echocardiography and aortic pressure and flow signals acquired in the beginning of GA (baseline condition). If intraoperative hypotension (IOH) appeared, diluted norepinephrine (NOR) was administered and the model readjusted according to the measured aortic pressure and flow signals. Such patients were a posteriori assigned into a so-called hypotensive group. The accuracy of simulated mean aortic pressure (MAP) and stroke volume (SV) at baseline were in accordance with the guidelines for the validation of new devices or reference measurement methods in all patients. After NOR administration in the hypotensive group, the percentage of concordance with 10% exclusion zone between measurement and simulation was >95% for both MAP and SV. The modeling results showed a decreased Vva (0.64±0.37 vs 0.88±0.43; p = 0.039) and an increased CE (0.8±0.1 vs 0.73±0.11; p = 0.042) in hypotensive vs normotensive patients. Furthermore, Vva increased by 92±101%, CE decreased by 13±11% (p < 0.001 for both) and contractility increased by 14±11% (p = 0.002) in the hypotensive group post-NOR administration. In this work we demonstrated the application of fast-running patient-specific biophysical models to estimate PV loops and functional indicators of CV system using clinical data available during GA. The work paves the way for model-augmented hemodynamic monitoring at operating theatres or intensive care units to enhance the information on patient-specific physiology.


Assuntos
Anestesia Geral/métodos , Pressão Arterial/fisiologia , Débito Cardíaco/fisiologia , Monitorização Hemodinâmica/métodos , Hipotensão/fisiopatologia , Modelos Cardiovasculares , Volume Sistólico/fisiologia , Algoritmos , Fenômenos Biomecânicos , Pressão Sanguínea , Feminino , Humanos , Hipotensão/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Norepinefrina/administração & dosagem , Estudo de Prova de Conceito , Estudos Prospectivos , Vasoconstritores/administração & dosagem
12.
PLoS One ; 15(2): e0229015, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32084180

RESUMO

Understanding (patho)physiological phenomena and mechanisms of failure in patients with Fontan circulation-a surgically established circulation for patients born with a functionally single ventricle-remains challenging due to the complex hemodynamics and high inter-patient variations in anatomy and function. In this work, we present a biomechanical model of the heart and circulation to augment the diagnostic evaluation of Fontan patients with early-stage heart failure. The proposed framework employs a reduced-order model of heart coupled with a simplified circulation including venous return, creating a closed-loop system. We deploy this framework to augment the information from data obtained during combined cardiac catheterization and magnetic resonance exams (XMR), performed at rest and during dobutamine stress in 9 children with Fontan circulation and 2 biventricular controls. We demonstrate that our modeling framework enables patient-specific investigation of myocardial stiffness, contractility at rest, contractile reserve during stress and changes in vascular resistance. Hereby, the model allows to identify key factors underlying the pathophysiological response to stress in these patients. In addition, the rapid personalization of the model to patient data and fast simulation of cardiac cycles make our framework directly applicable in a clinical workflow. We conclude that the proposed modeling framework is a valuable addition to the current clinical diagnostic XMR exam that helps to explain patient-specific stress hemodynamics and can identify potential mechanisms of failure in patients with Fontan circulation.


Assuntos
Dobutamina/farmacologia , Técnica de Fontan/métodos , Fenômenos Biomecânicos , Coração , Hemodinâmica/efeitos dos fármacos , Humanos , Modelos Cardiovasculares , Resistência Vascular/efeitos dos fármacos
13.
Biomech Model Mechanobiol ; 18(3): 563-587, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30607642

RESUMO

We propose a chemical-mechanical model of myosin heads in sarcomeres, within the classical description of rigid sliding filaments. In our case, myosin heads have two mechanical degrees-of-freedom (dofs)-one of which associated with the so-called power stroke-and two possible chemical states, i.e., bound to an actin site or not. Our major motivations are twofold: (1) to derive a multiscale coupled chemical-mechanical model and (2) to thus account-at the macroscopic scale-for mechanical phenomena that are out of reach for classical muscle models. This model is first written in the form of Langevin stochastic equations, and we are then able to obtain the corresponding Fokker-Planck partial differential equations governing the probability density functions associated with the mechanical dofs and chemical states. This second form is important, as it allows to monitor muscle energetics and also to compare our model with classical ones, such as the Huxley'57 model to which our equations are shown to reduce under two different types of simplifying assumptions. This provides insight and gives a Langevin form for Huxley'57. We then show how we can calibrate our model based on experimental data-taken here for skeletal muscles-and numerical simulations demonstrate the adequacy of the model to represent complex physiological phenomena, in particular the fast isometric transients in which the power stroke is known to have a crucial role, thus circumventing a limitation of many classical models.


Assuntos
Modelos Biológicos , Músculo Estriado/fisiologia , Fenômenos Biomecânicos , Calibragem , Contração Isométrica , Miosinas/metabolismo , Processos Estocásticos , Termodinâmica , Viscosidade
14.
Artigo em Inglês | MEDLINE | ID: mdl-27342099

RESUMO

This paper presents a numerical study in which several partitioned solution procedures for incompressible fluid-structure interaction are compared and validated against the results of an experimental fluid-structure interaction benchmark. The numerical methods discussed cover the three main families of coupling schemes: strongly coupled, semi-implicit, and loosely coupled. Very good agreement is observed between the numerical and experimental results. The comparisons confirm that strong coupling can be efficiently avoided, via semi-implicit and loosely coupled schemes, without compromising stability and accuracy. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Algoritmos , Hidrodinâmica , Benchmarking , Elasticidade , Silicones/química , Viscosidade
15.
Interface Focus ; 6(2): 20150083, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-27051509

RESUMO

With heart and cardiovascular diseases continually challenging healthcare systems worldwide, translating basic research on cardiac (patho)physiology into clinical care is essential. Exacerbating this already extensive challenge is the complexity of the heart, relying on its hierarchical structure and function to maintain cardiovascular flow. Computational modelling has been proposed and actively pursued as a tool for accelerating research and translation. Allowing exploration of the relationships between physics, multiscale mechanisms and function, computational modelling provides a platform for improving our understanding of the heart. Further integration of experimental and clinical data through data assimilation and parameter estimation techniques is bringing computational models closer to use in routine clinical practice. This article reviews developments in computational cardiac modelling and how their integration with medical imaging data is providing new pathways for translational cardiac modelling.

16.
J Mech Behav Biomed Mater ; 4(7): 1090-102, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21783118

RESUMO

Parameter estimation from non-invasive measurements is a crucial step in patient-specific cardiac modeling. It also has the potential to provide significant assistance in the clinical diagnosis of cardiac diseases through the quantification of myocardial material heterogeneity. In this paper, we formulate a novel Reduced-order Unscented Kalman Filter (rUKF) applied to the left ventricular (LV) nonlinear mechanical model based on cubic-Hermite finite elements. Material parameters in the widely-employed transversely isotropic Guccione's constitutive law are successfully identified for both homogeneous and heterogeneous cases. We conclude that the four parameters in Guccione's law can be uniquely and correctly determined in-silico from noisy displacement measurements of material points located on the myocardial surfaces. The future application of this novel and effective approach to real clinical measurements is thus promising.


Assuntos
Ventrículos do Coração , Fenômenos Mecânicos , Dinâmica não Linear , Fenômenos Biomecânicos , Estudos de Viabilidade , Análise de Elementos Finitos , Ventrículos do Coração/anatomia & histologia , Modelos Anatômicos , Função Ventricular Esquerda
17.
Interface Focus ; 1(3): 349-64, 2011 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-22670205

RESUMO

The loss of cardiac pump function accounts for a significant increase in both mortality and morbidity in Western society, where there is currently a one in four lifetime risk, and costs associated with acute and long-term hospital treatments are accelerating. The significance of cardiac disease has motivated the application of state-of-the-art clinical imaging techniques and functional signal analysis to aid diagnosis and clinical planning. Measurements of cardiac function currently provide high-resolution datasets for characterizing cardiac patients. However, the clinical practice of using population-based metrics derived from separate image or signal-based datasets often indicates contradictory treatments plans owing to inter-individual variability in pathophysiology. To address this issue, the goal of our work, demonstrated in this study through four specific clinical applications, is to integrate multiple types of functional data into a consistent framework using multi-scale computational modelling.

18.
Med Sci (Paris) ; 21(5): 530-4, 2005 May.
Artigo em Francês | MEDLINE | ID: mdl-15885205

RESUMO

In this article, we aim at giving a non-technical overview of some mathematical models currently used in the numerical simulation of the cardiovascular system. A hierarchy of models for blood flows in large arteries is briefly described as well as an electromechanical model for the heart. We discuss some possible applications of the numerical simulations of such models, for example the optimization of prostheses. We also address the issue of the data assimilation for the calibration of the models.


Assuntos
Sistema Cardiovascular , Simulação por Computador , Modelos Cardiovasculares , Artérias , Circulação Sanguínea , Eletrofisiologia , Coração/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...