Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 511(7510): 452-6, 2014 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-25043014

RESUMO

Thermokarst lakes formed across vast regions of Siberia and Alaska during the last deglaciation and are thought to be a net source of atmospheric methane and carbon dioxide during the Holocene epoch. However, the same thermokarst lakes can also sequester carbon, and it remains uncertain whether carbon uptake by thermokarst lakes can offset their greenhouse gas emissions. Here we use field observations of Siberian permafrost exposures, radiocarbon dating and spatial analyses to quantify Holocene carbon stocks and fluxes in lake sediments overlying thawed Pleistocene-aged permafrost. We find that carbon accumulation in deep thermokarst-lake sediments since the last deglaciation is about 1.6 times larger than the mass of Pleistocene-aged permafrost carbon released as greenhouse gases when the lakes first formed. Although methane and carbon dioxide emissions following thaw lead to immediate radiative warming, carbon uptake in peat-rich sediments occurs over millennial timescales. We assess thermokarst-lake carbon feedbacks to climate with an atmospheric perturbation model and find that thermokarst basins switched from a net radiative warming to a net cooling climate effect about 5,000 years ago. High rates of Holocene carbon accumulation in 20 lake sediments (47 ± 10 grams of carbon per square metre per year; mean ± standard error) were driven by thermokarst erosion and deposition of terrestrial organic matter, by nutrient release from thawing permafrost that stimulated lake productivity and by slow decomposition in cold, anoxic lake bottoms. When lakes eventually drained, permafrost formation rapidly sequestered sediment carbon. Our estimate of about 160 petagrams of Holocene organic carbon in deep lake basins of Siberia and Alaska increases the circumpolar peat carbon pool estimate for permafrost regions by over 50 per cent (ref. 6). The carbon in perennially frozen drained lake sediments may become vulnerable to mineralization as permafrost disappears, potentially negating the climate stabilization provided by thermokarst lakes during the late Holocene.


Assuntos
Sequestro de Carbono , Lagos/química , Alaska , Atmosfera/química , Canadá , Dióxido de Carbono/análise , Clima , Congelamento , Sedimentos Geológicos/química , Efeito Estufa , História Antiga , Metano/análise , Sibéria , Solo/química , Temperatura
2.
Ecology ; 93(8): 1816-29, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22928411

RESUMO

Effects of anthropogenic nitrogen (N) deposition and the ability of terrestrial ecosystems to store carbon (C) depend in part on the amount of N retained in the system and its partitioning among plant and soil pools. We conducted a meta-analysis of studies at 48 sites across four continents that used enriched 15N isotope tracers in order to synthesize information about total ecosystem N retention (i.e., total ecosystem 15N recovery in plant and soil pools) across natural systems and N partitioning among ecosystem pools. The greatest recoveries of ecosystem 15N tracer occurred in shrublands (mean, 89.5%) and wetlands (84.8%) followed by forests (74.9%) and grasslands (51.8%). In the short term (< 1 week after 15N tracer application), total ecosystem 15N recovery was negatively correlated with fine-root and soil 15N natural abundance, and organic soil C and N concentration but was positively correlated with mean annual temperature and mineral soil C:N. In the longer term (3-18 months after 15N tracer application), total ecosystem 15N retention was negatively correlated with foliar natural-abundance 15N but was positively correlated with mineral soil C and N concentration and C:N, showing that plant and soil natural-abundance 15N and soil C:N are good indicators of total ecosystem N retention. Foliar N concentration was not significantly related to ecosystem 15N tracer recovery, suggesting that plant N status is not a good predictor of total ecosystem N retention. Because the largest ecosystem sinks for 15N tracer were below ground in forests, shrublands, and grasslands, we conclude that growth enhancement and potential for increased C storage in aboveground biomass from atmospheric N deposition is likely to be modest in these ecosystems. Total ecosystem 15N recovery decreased with N fertilization, with an apparent threshold fertilization rate of 46 kg N x ha(-1) x yr(-1) above which most ecosystems showed net losses of applied 15N tracer in response to N fertilizer addition.


Assuntos
Ecossistema , Ciclo do Nitrogênio , Nitrogênio/química , Altitude , Amônia/química , Vazamento de Resíduos Químicos , Nitratos/química , Isótopos de Nitrogênio , Chuva , Temperatura
3.
Ecol Lett ; 15(6): 520-6, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22472207

RESUMO

Trees with sufficient nutrition are known to allocate carbon preferentially to aboveground plant parts. Our global study of 49 forests revealed an even more fundamental carbon allocation response to nutrient availability: forests with high-nutrient availability use 58 ± 3% (mean ± SE; 17 forests) of their photosynthates for plant biomass production (BP), while forests with low-nutrient availability only convert 42 ± 2% (mean ± SE; 19 forests) of annual photosynthates to biomass. This nutrient effect largely overshadows previously observed differences in carbon allocation patterns among climate zones, forest types and age classes. If forests with low-nutrient availability use 16 ± 4% less of their photosynthates for plant growth, what are these used for? Current knowledge suggests that lower BP per unit photosynthesis in forests with low- versus forests with high-nutrient availability reflects not merely an increase in plant respiration, but likely results from reduced carbon allocation to unaccounted components of net primary production, particularly root symbionts.


Assuntos
Biomassa , Ciclo do Carbono , Árvores/crescimento & desenvolvimento , Processos Autotróficos , Carbono/metabolismo , Respiração Celular , Clima , Agricultura Florestal , Fotossíntese , Raízes de Plantas/microbiologia , Árvores/metabolismo , Árvores/microbiologia
6.
Ecol Appl ; 19(4): 1022-43, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19544741

RESUMO

Assessing potential future changes in arctic and boreal plant species productivity, ecosystem composition, and canopy complexity is essential for understanding environmental responses under expected altered climate forcing. We examined potential changes in the dominant plant functional types (PFTs) of the sedge tundra, shrub tundra, and boreal forest ecosystems in ecotonal northern Alaska, USA, for the years 2003-2100. We compared energy feedbacks associated with increases in biomass to energy feedbacks associated with changes in the duration of the snow-free season. We based our simulations on nine input climate scenarios from the Intergovernmental Panel on Climate Change (IPCC) and a new version of the Terrestrial Ecosystem Model (TEM) that incorporates biogeochemistry, vegetation dynamics for multiple PFTs (e.g., trees, shrubs, grasses, sedges, mosses), multiple vegetation pools, and soil thermal regimes. We found mean increases in net primary productivity (NPP) in all PFTs. Most notably, birch (Betula spp.) in the shrub tundra showed increases that were at least three times larger than any other PFT. Increases in NPP were positively related to increases in growing-season length in the sedge tundra, but PFTs in boreal forest and shrub tundra showed a significant response to changes in light availability as well as growing-season length. Significant NPP responses to changes in vegetation uptake of nitrogen by PFT indicated that some PFTs were better competitors for nitrogen than other PFTs. While NPP increased, heterotrophic respiration (RH) also increased, resulting in decreases or no change in net ecosystem carbon uptake. Greater aboveground biomass from increased NPP produced a decrease in summer albedo, greater regional heat absorption (0.34 +/- 0.23 W x m(-2) x 10 yr(-1) [mean +/- SD]), and a positive feedback to climate warming. However, the decrease in albedo due to a shorter snow season (-5.1 +/- 1.6 d/10 yr) resulted in much greater regional heat absorption (3.3 +/- 1.24 W x m(-2) x 10 yr(-1)) than that associated with increases in vegetation. Through quantifying feedbacks associated with changes in vegetation and those associated with changes in the snow season length, we can reach a more integrated understanding of the manner in which climate change may impact interactions between high-latitude ecosystems and the climate system.


Assuntos
Ecossistema , Efeito Estufa , Desenvolvimento Vegetal , Alaska , Regiões Árticas , Carbono/análise , Carbono/metabolismo , Respiração Celular , Nitrogênio/metabolismo , Plantas/metabolismo , Estações do Ano , Neve , Solo/análise , Luz Solar
7.
Science ; 318(5850): 633-6, 2007 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-17962561

RESUMO

Polar ice-core records suggest that an arctic or boreal source was responsible for more than 30% of the large increase in global atmospheric methane (CH4) concentration during deglacial climate warming; however, specific sources of that CH4 are still debated. Here we present an estimate of past CH4 flux during deglaciation from bubbling from thermokarst (thaw) lakes. Based on high rates of CH4 bubbling from contemporary arctic thermokarst lakes, high CH4 production potentials of organic matter from Pleistocene-aged frozen sediments, and estimates of the changing extent of these deposits as thermokarst lakes developed during deglaciation, we find that CH4 bubbling from newly forming thermokarst lakes comprised 33 to 87% of the high-latitude increase in atmospheric methane concentration and, in turn, contributed to the climate warming at the Pleistocene-Holocene transition.

8.
Science ; 314(5802): 1130-2, 2006 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-17110574

RESUMO

We report measurements and analysis of a boreal forest fire, integrating the effects of greenhouse gases, aerosols, black carbon deposition on snow and sea ice, and postfire changes in surface albedo. The net effect of all agents was to increase radiative forcing during the first year (34 +/- 31 Watts per square meter of burned area), but to decrease radiative forcing when averaged over an 80-year fire cycle (-2.3 +/- 2.2 Watts per square meter) because multidecadal increases in surface albedo had a larger impact than fire-emitted greenhouse gases. This result implies that future increases in boreal fire may not accelerate climate warming.


Assuntos
Incêndios , Efeito Estufa , Árvores , Ecossistema
9.
Nature ; 443(7107): 71-5, 2006 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-16957728

RESUMO

Large uncertainties in the budget of atmospheric methane, an important greenhouse gas, limit the accuracy of climate change projections. Thaw lakes in North Siberia are known to emit methane, but the magnitude of these emissions remains uncertain because most methane is released through ebullition (bubbling), which is spatially and temporally variable. Here we report a new method of measuring ebullition and use it to quantify methane emissions from two thaw lakes in North Siberia. We show that ebullition accounts for 95 per cent of methane emissions from these lakes, and that methane flux from thaw lakes in our study region may be five times higher than previously estimated. Extrapolation of these fluxes indicates that thaw lakes in North Siberia emit 3.8 teragrams of methane per year, which increases present estimates of methane emissions from northern wetlands (< 6-40 teragrams per year; refs 1, 2, 4-6) by between 10 and 63 per cent. We find that thawing permafrost along lake margins accounts for most of the methane released from the lakes, and estimate that an expansion of thaw lakes between 1974 and 2000, which was concurrent with regional warming, increased methane emissions in our study region by 58 per cent. Furthermore, the Pleistocene age (35,260-42,900 years) of methane emitted from hotspots along thawing lake margins indicates that this positive feedback to climate warming has led to the release of old carbon stocks previously stored in permafrost.


Assuntos
Água Doce/química , Efeito Estufa , Camada de Gelo/química , Metano/análise , Atmosfera/química , Carbono/metabolismo , Metano/metabolismo , Sibéria , Temperatura , Fatores de Tempo
10.
Science ; 310(5748): 657-60, 2005 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-16179434

RESUMO

A major challenge in predicting Earth's future climate state is to understand feedbacks that alter greenhouse-gas forcing. Here we synthesize field data from arctic Alaska, showing that terrestrial changes in summer albedo contribute substantially to recent high-latitude warming trends. Pronounced terrestrial summer warming in arctic Alaska correlates with a lengthening of the snow-free season that has increased atmospheric heating locally by about 3 watts per square meter per decade (similar in magnitude to the regional heating expected over multiple decades from a doubling of atmospheric CO2). The continuation of current trends in shrub and tree expansion could further amplify this atmospheric heating by two to seven times.


Assuntos
Efeito Estufa , Alaska , Regiões Árticas , Picea , Estações do Ano , Árvores
11.
Ambio ; 33(6): 344-9, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15387072

RESUMO

The arctic tundra and boreal forest were once considered the last frontiers on earth because of their vast expanses remote from agricultural land-use change and industrial development. These regions are now, however, experiencing environmental and social changes that are as rapid as those occurring anywhere on earth. This paper summarizes the role of northern regions in the global system and provides a blueprint for assessing the factors that govern their sensitivity to social and environmental change.


Assuntos
Conservação dos Recursos Naturais , Efeito Estufa , Árvores , Regiões Árticas , Ecossistema , Poluentes Ambientais/intoxicação , Condições Sociais
13.
Nature ; 409(6817): 188-91, 2001 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-11196641

RESUMO

Carbon accumulation in the terrestrial biosphere could partially offset the effects of anthropogenic CO2 emissions on atmospheric CO2. The net impact of increased CO2 on the carbon balance of terrestrial ecosystems is unclear, however, because elevated CO2 effects on carbon input to soils and plant use of water and nutrients often have contrasting effects on microbial processes. Here we show suppression of microbial decomposition in an annual grassland after continuous exposure to increased CO2 for five growing seasons. The increased CO2 enhanced plant nitrogen uptake, microbial biomass carbon, and available carbon for microbes. But it reduced available soil nitrogen, exacerbated nitrogen constraints on microbes, and reduced microbial respiration per unit biomass. These results indicate that increased CO2 can alter the interaction between plants and microbes in favour of plant utilization of nitrogen, thereby slowing microbial decomposition and increasing ecosystem carbon accumulation.


Assuntos
Dióxido de Carbono/metabolismo , Microbiologia Ambiental , Nitrogênio/metabolismo , Poaceae/metabolismo , Atmosfera , Biodegradação Ambiental , Biomassa , Solo , Microbiologia do Solo
14.
Nature ; 405(6783): 234-42, 2000 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-10821284

RESUMO

Human alteration of the global environment has triggered the sixth major extinction event in the history of life and caused widespread changes in the global distribution of organisms. These changes in biodiversity alter ecosystem processes and change the resilience of ecosystems to environmental change. This has profound consequences for services that humans derive from ecosystems. The large ecological and societal consequences of changing biodiversity should be minimized to preserve options for future solutions to global environmental problems.


Assuntos
Ecossistema , Animais , Humanos , Sociologia
15.
Science ; 287(5459): 1770-4, 2000 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-10710299

RESUMO

Scenarios of changes in biodiversity for the year 2100 can now be developed based on scenarios of changes in atmospheric carbon dioxide, climate, vegetation, and land use and the known sensitivity of biodiversity to these changes. This study identified a ranking of the importance of drivers of change, a ranking of the biomes with respect to expected changes, and the major sources of uncertainties. For terrestrial ecosystems, land-use change probably will have the largest effect, followed by climate change, nitrogen deposition, biotic exchange, and elevated carbon dioxide concentration. For freshwater ecosystems, biotic exchange is much more important. Mediterranean climate and grassland ecosystems likely will experience the greatest proportional change in biodiversity because of the substantial influence of all drivers of biodiversity change. Northern temperate ecosystems are estimated to experience the least biodiversity change because major land-use change has already occurred. Plausible changes in biodiversity in other biomes depend on interactions among the causes of biodiversity change. These interactions represent one of the largest uncertainties in projections of future biodiversity change.


Assuntos
Ecossistema , Agricultura , Animais , Atmosfera , Dióxido de Carbono , Clima , Água Doce , Modelos Biológicos , Nitrogênio
16.
Glob Chang Biol ; 6(S1): 1-18, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35026933

RESUMO

Understanding the distribution and function of Arctic and boreal ecosystems under current conditions and their vulnerability to altered forcing is crucial to our assessment of future global environmental change. Such efforts can be facilitated by the development and application of ecological models that simulate realistic patterns of vegetation change at high latitudes. This paper reviews three classes of ecological models that have been implemented to extrapolate vegetation information in space (e.g. across the Arctic and adjacent domains) and over historical and future periods (e.g. under altered climate and other forcings). These are: (i) equilibrium biogeographical models; (ii) frame-based transient ecosystem models, and (iii) dynamic global vegetation models (DGVMs). The equilibrium response of high-latitude vegetation to scenarios of increased surface air temperatures projected by equilibrium biogeographical models is for tundra to be replaced by a northward shift of boreal woodland and forests. A frame-based model (ALFRESCO) indicates the same directional changes, but illustrates how response time depends on rate of temperature increase and concomitant changes in moisture regime and fire disturbance return period. Key disadvantages of the equilibrium models are that they do not simulate time-dependent responses of vegetation and the role of disturbance is omitted or highly generalized. Disadvantages of the frame-based models are that vegetation type is modelled as a set unit as opposed to an association of individually simulated plant functional types and that the role of ecosystem biogeochemistry in succession is not explicitly considered. DGVMs explicitly model disturbance (e.g. fire), operate on plant functional types, and incorporate constraints of nutrient availability on biomass production in the simulation of vegetation dynamics. Under changing climate, DGVMs detail conversion of tundra to tree-dominated boreal landscapes along with time-dependent responses of biomass, net primary production, and soil organic matter turnover--which all increase with warming. Key improvements to DGVMs that are needed to portray behaviour of arctic and boreal ecosystems adequately are the inclusion of anaerobic soil processes for inundated landscapes, permafrost dynamics, and moss-lichen layer biogeochemistry, as well as broader explicit accounting of disturbance regimes (including insect outbreaks and land management). Transient simulation of these landscapes can be further tailored to high-latitude processes and issues by spatially interactive, gridded application of arctic/boreal frame-based models and development of dynamic regional vegetation models (DRVMs) utilizing plant functional type schemes that capture the variety of high-latitude environments.

17.
Glob Chang Biol ; 6(S1): 211-223, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35026938

RESUMO

Synthesis of results from several Arctic and boreal research programmes provides evidence for the strong role of high-latitude ecosystems in the climate system. Average surface air temperature has increased 0.3 °C per decade during the twentieth century in the western North American Arctic and boreal forest zones. Precipitation has also increased, but changes in soil moisture are uncertain. Disturbance rates have increased in the boreal forest; for example, there has been a doubling of the area burned in North America in the past 20 years. The disturbance regime in tundra may not have changed. Tundra has a 3-6-fold higher winter albedo than boreal forest, but summer albedo and energy partitioning differ more strongly among ecosystems within either tundra or boreal forest than between these two biomes. This indicates a need to improve our understanding of vegetation dynamics within, as well as between, biomes. If regional surface warming were to continue, changes in albedo and energy absorption would likely act as a positive feedback to regional warming due to earlier melting of snow and, over the long term, the northward movement of treeline. Surface drying and a change in dominance from mosses to vascular plants would also enhance sensible heat flux and regional warming in tundra. In the boreal forest of western North America, deciduous forests have twice the albedo of conifer forests in both winter and summer, 50-80% higher evapotranspiration, and therefore only 30-50% of the sensible heat flux of conifers in summer. Therefore, a warming-induced increase in fire frequency that increased the proportion of deciduous forests in the landscape, would act as a negative feedback to regional warming. Changes in thermokarst and the aerial extent of wetlands, lakes, and ponds would alter high-latitude methane flux. There is currently a wide discrepancy among estimates of the size and direction of CO2 flux between high-latitude ecosystems and the atmosphere. These discrepancies relate more strongly to the approach and assumptions for extrapolation than to inconsistencies in the underlying data. Inverse modelling from atmospheric CO2 concentrations suggests that high latitudes are neutral or net sinks for atmospheric CO2 , whereas field measurements suggest that high latitudes are neutral or a net CO2 source. Both approaches rely on assumptions that are difficult to verify. The most parsimonious explanation of the available data is that drying in tundra and disturbance in boreal forest enhance CO2 efflux. Nevertheless, many areas of both tundra and boreal forests remain net sinks due to regional variation in climate and local variation in topographically determined soil moisture. Improved understanding of the role of high-latitude ecosystems in the climate system requires a concerted research effort that focuses on geographical variation in the processes controlling land-atmosphere exchange, species composition, and ecosystem structure. Future studies must be conducted over a long enough time-period to detect and quantify ecosystem feedbacks.

19.
Trends Ecol Evol ; 9(10): 371-2, 1994 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21236895
20.
Oecologia ; 100(4): 406-412, 1994 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28306929

RESUMO

Natural abundances of nitrogen isotopes, δ15N, indicate that, in the same habitat, Alaskan Picea glauca and P. mariana use a different soil nitrogen compartment from the evergreen shrub Vaccinium vitis-idaea or the deciduous grass Calamagrostis canadensis. The very low δ15N values (-7.7 ‰) suggest that (1) Picea mainly uses inorganic nitrogen (probably mainly ammonium) or organic N in fresh litter, (2) Vaccinium (-4.3 ‰) with its ericoid mycorrhizae uses more stable organic matter, and (3) Calamagrostis (+0.9 ‰) exploits deeper soil horizons with higher δ15N values of soil N. We conclude that species limited by the same nutrient may coexist by drawing on different pools of soil N in a nutrient-deficient environment. The differences among life-forms decrease with increasing N availability. The different levels of δ15N are associated with different nitrogen concentrations in leaves, Picea having a lower N concentration (0.62 mmol g-1) than Vaccinium (0.98 mmol g-1) or Calamagrostis (1.33 mmol g-1). An extended vector analysis by Timmer and Armstrong (1987) suggests that N is the most limiting element for Picea in this habitat, causing needle yellowing at N concentrations below 0.5 mmol g-1 or N contents below 2 mmol needle-1. Increasing N supply had an exponential effect on twig and needle growth. Phosphorus, potassium and magnesium are at marginal supply, but no interaction between ammonium supply and needle Mg concentration could be detected. Calcium is in adequate supply on both calcareous and acidic soils. The results are compared with European conditions of excessive N supply from anthropogenic N depositions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...