Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurophysiol ; 125(1): 296-304, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33326337

RESUMO

The marmoset monkey (Callithrix jacchus) has gained attention in neurophysiology research as a new primate model for visual processing and behavior. In particular, marmosets have a lissencephalic cortex, making multielectrode, optogenetic, and calcium-imaging techniques more accessible than other primate models. However, the degree of homology of brain circuits for visual behavior with those identified in macaques and humans is still being ascertained. For example, whereas the location of the frontal eye fields (FEF) within the dorsolateral frontal cortex has been proposed, it remains unclear whether neurons in the corresponding areas show visual responses-an important characteristic of FEF neurons in other species. Here, we provide the first description of receptive field properties and neural response latencies in the marmoset dorsolateral frontal cortex, based on recordings using Utah arrays in anesthetized animals. We find brisk visual responses in specific regions of the dorsolateral prefrontal cortex, particularly in areas 8aV, 8C, and 6DR. As in macaque FEF, the receptive fields were typically large (10°-30° in diameter) and the median responses latency was brisk (60 ms). These results constrain the possible interpretations about the location of the marmoset FEF and suggest that the marmoset model's significant advantages for the use of physiological techniques may be leveraged in the study of visuomotor cognition.NEW & NOTEWORTHY Behavior and cognition in humans and other primates rely on networks of brain areas guided by the frontal cortex. The marmoset offers exciting new opportunities to study links between brain physiology and behavior, but the functions of frontal cortex areas are still being identified in this species. Here, we provide the first evidence of visual receptive fields in the marmoset dorsolateral frontal cortex, an important step toward future studies of visual cognitive behavior.


Assuntos
Potenciais Evocados Visuais , Lobo Frontal/fisiologia , Animais , Callithrix , Feminino , Masculino , Campos Visuais , Percepção Visual
2.
Cereb Cortex ; 30(2): 451-464, 2020 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-31211357

RESUMO

Primates with primary visual cortex (V1) damage often retain residual motion sensitivity, which is hypothesized to be mediated by middle temporal area (MT). MT neurons continue to respond to stimuli shortly after V1 lesions; however, experimental and clinical studies of lesion-induced plasticity have shown that lesion effects can take several months to stabilize. It is unknown what physiological changes occur in MT and whether neural responses persist long after V1 damage. We recorded neuronal responses in MT to moving dot patterns in adult marmoset monkeys 6-12 months after unilateral V1 lesions. In contrast to results obtained shortly after V1 lesions, we found that fewer MT neurons were direction selective, including neurons expected to still receive projections from remaining parts of V1. The firing rates of most cells increased with increases in motion strength, regardless of stimulus direction. Furthermore, firing rates were higher and more variable than in control MT cells. To test whether these observations could be mechanistically explained by underlying changes in neural circuitry, we created a network model of MT. We found that a local imbalance of inhibition and excitation explained the observed firing rate changes. These results provide the first insights into functional implications of long-term plasticity in MT following V1 lesions.


Assuntos
Percepção de Movimento/fisiologia , Plasticidade Neuronal , Lobo Temporal/fisiologia , Córtex Visual/fisiologia , Animais , Callithrix , Feminino , Masculino , Modelos Neurológicos , Estimulação Luminosa
3.
Curr Opin Neurobiol ; 60: 122-128, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31869592

RESUMO

The cerebral cortex contains cells which respond to movement of the head, and these cells are thought to be involved in the perception of self-motion. In particular, studies in the primary visual cortex of mice show that both running speed and passive whole-body rotation modulates neuronal activity, and modern genetically targeted viral tracing approaches have begun to identify previously unknown circuits that underlie these responses. Here we review recent experimental findings and provide a road map for future work in mice to elucidate the functional architecture and emergent properties of a cortical network potentially involved in the generation of egocentric-based visual representations for navigation.


Assuntos
Percepção de Movimento , Córtex Visual , Animais , Córtex Cerebral , Camundongos , Movimento (Física) , Neurônios
4.
J Neurosci ; 39(27): 5311-5325, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31036760

RESUMO

The boundaries of the visual areas located anterior to V2 in the dorsomedial region of the macaque cortex remain contentious. This region is usually conceptualized as including two functional subdivisions: the dorsal component of area V3 (V3d) laterally and another area named the parietooccipital area (PO) or V6 medially. However, the nature of the putative border between V3d and PO/V6 has remained undefined. We recorded the receptive fields of multiunit clusters in male macaques and reconstructed the locations of recording sites using histological sections and computer-generated maps. Immediately adjacent to dorsomedial V2, we observed a representation of the lower contralateral quadrant that represented the vertical meridian at its rostral border. This region formed a simple eccentricity gradient from ∼<5° in the annectant gyrus to >60° in the parietooccipital medial sulcus. There was no topographic reversal where one would expect to find the border between V3d and PO/V6. Rather, near the midline, this lower quadrant map continued directly into a representation of the peripheral upper visual field without an intervening lower quadrant representation. Therefore, cortex previously assigned to the medial part of V3d and to PO/V6 forms a single map that includes parts of both quadrants. Together with previous observations that V3d and PO/V6 are densely myelinated relative to adjacent cortex and share similar input from V1, these results suggest that they are parts of a single area (for which we suggest the designation V6), which is distinct from the one forming the ventral component of the third-tier complex.SIGNIFICANCE STATEMENT The primate visual cortex has a large number of areas. Knowing the extent of each visual area and how they can be distinguished from each other is essential for the interpretation of experiments aimed at understanding visual processing. Currently, there are conflicting models of the organization of the dorsomedial visual cortex rostral to area V2 (one of the earliest stages of cortical processing of vision). By conducting large-scale electrophysiological recordings, we found that what were originally thought to be distinct areas in this region (dorsal V3 and the parietooccipital area PO/V6), together form a single map of the visual field. This will help to guide future functional studies and the interpretation of the outcomes of lesions involving the dorsal visual cortex.


Assuntos
Neurônios/fisiologia , Córtex Visual/anatomia & histologia , Córtex Visual/fisiologia , Campos Visuais/fisiologia , Animais , Macaca fascicularis , Masculino , Estimulação Luminosa , Vias Visuais/anatomia & histologia , Vias Visuais/fisiologia , Percepção Visual/fisiologia
5.
Cereb Cortex ; 29(4): 1473-1495, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29697775

RESUMO

Area 10, located in the frontal pole, is a unique specialization of the primate cortex. We studied the cortical connections of area 10 in the New World Cebus monkey, using injections of retrograde tracers in different parts of this area. We found that injections throughout area 10 labeled neurons in a consistent set of areas in the dorsolateral, ventrolateral, orbital, and medial parts of the frontal cortex, superior temporal association cortex, and posterior cingulate/retrosplenial region. However, sites on the midline surface of area 10 received more substantial projections from the temporal lobe, including clear auditory connections, whereas those in more lateral parts received >90% of their afferents from other frontal areas. This difference in anatomical connectivity reflects functional connectivity findings in the human brain. The pattern of connections in Cebus is very similar to that observed in the Old World macaque monkey, despite >40 million years of evolutionary separation, but lacks some of the connections reported in the more closely related but smaller marmoset monkey. These findings suggest that the clearer segregation observed in the human frontal pole reflects regional differences already present in early simian primates, and that overall brain mass influences the pattern of cortico-cortical connectivity.


Assuntos
Evolução Biológica , Lobo Frontal/citologia , Vias Aferentes/citologia , Animais , Cebus , Feminino , Giro do Cíngulo/citologia , Masculino , Técnicas de Rastreamento Neuroanatômico , Neurônios/citologia , Lobo Temporal/citologia
6.
Front Neural Circuits ; 12: 93, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30416431

RESUMO

The ability of animals to detect motion is critical for survival, and errors or even delays in motion perception may prove costly. In the natural world, moving objects in the visual field often produce concurrent sounds. Thus, it can highly advantageous to detect motion elicited from sensory signals of either modality, and to integrate them to produce more reliable motion perception. A great deal of progress has been made in understanding how visual motion perception is governed by the activity of single neurons in the primate cerebral cortex, but far less progress has been made in understanding both auditory motion and audiovisual motion integration. Here we, review the key cortical regions for motion processing, focussing on translational motion. We compare the representations of space and motion in the visual and auditory systems, and examine how single neurons in these two sensory systems encode the direction of motion. We also discuss the way in which humans integrate of audio and visual motion cues, and the regions of the cortex that may mediate this process.


Assuntos
Percepção Auditiva/fisiologia , Córtex Cerebral/fisiologia , Percepção de Movimento/fisiologia , Estimulação Acústica/métodos , Animais , Humanos , Estimulação Luminosa/métodos , Primatas
7.
Eur J Neurosci ; 48(4): 2013-2029, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30019438

RESUMO

The integration of multiple sensory modalities is a key aspect of brain function, allowing animals to take advantage of concurrent sources of information to make more accurate perceptual judgments. For many years, multisensory integration in the cerebral cortex was deemed to occur only in high-level "polysensory" association areas. However, more recent studies have suggested that cross-modal stimulation can also influence neural activity in areas traditionally considered to be unimodal. In particular, several human neuroimaging studies have reported that extrastriate areas involved in visual motion perception are also activated by auditory motion, and may integrate audiovisual motion cues. However, the exact nature and extent of the effects of auditory motion on the visual cortex have not been studied at the single neuron level. We recorded the spiking activity of neurons in the middle temporal (MT) and medial superior temporal (MST) areas of anesthetized marmoset monkeys upon presentation of unimodal stimuli (moving auditory or visual patterns), as well as bimodal stimuli (concurrent audiovisual motion). Despite robust, direction selective responses to visual motion, none of the sampled neurons responded to auditory motion stimuli. Moreover, concurrent moving auditory stimuli had no significant effect on the ability of single MT and MST neurons, or populations of simultaneously recorded neurons, to discriminate the direction of motion of visual stimuli (moving random dot patterns with varying levels of motion noise). Our findings do not support the hypothesis that direct interactions between MT, MST and areas low in the hierarchy of auditory areas underlie audiovisual motion integration.


Assuntos
Percepção Auditiva/fisiologia , Mapeamento Encefálico/métodos , Percepção de Movimento/fisiologia , Neurônios/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Lobo Temporal/fisiologia , Animais , Callithrix , Eletrocorticografia , Feminino , Masculino
8.
J Neurosci ; 38(16): 3955-3970, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29555856

RESUMO

Lesions of striate cortex (V1) trigger massive retrograde degeneration of neurons in the LGN. In primates, these lesions also lead to scotomas, within which conscious vision is abolished. Mediation of residual visual capacity within these regions (blindsight) has been traditionally attributed to an indirect visual pathway to the extrastriate cortex, which involves the superior colliculus and pulvinar complex. However, recent studies have suggested that preservation of the LGN is critical for behavioral evidence of blindsight, raising the question of what type of visual information is channeled by remaining neurons in this structure. A possible contribution of LGN neurons to blindsight is predicated on two conditions: that the neurons that survive degeneration remain visually responsive, and that their receptive fields continue to represent the region of the visual field inside the scotoma. We tested these conditions in male and female marmoset monkeys (Callithrix jacchus) with partial V1 lesions at three developmental stages (early postnatal life, young adulthood, old age), followed by long recovery periods. In all cases, recordings from the degenerated LGN revealed neurons with well-formed receptive fields throughout the scotoma. The responses were consistent and robust, and followed the expected eye dominance and retinotopy observed in the normal LGN. The responses had short latencies and preceded those of neurons recorded in the extrastriate middle temporal area. These findings suggest that the pathway that links LGN neurons to the extrastriate cortex is physiologically viable and can support residual vision in animals with V1 lesions incurred at various ages.SIGNIFICANCE STATEMENT Patients with a lesion of the primary visual cortex (V1) can retain certain visually mediated behaviors, particularly if the lesion occurs early in life. This phenomenon ("blindsight") not only sheds light on the nature of consciousness, but also has implications for studies of brain circuitry, development, and plasticity. However, the pathways that mediate blindsight have been the subject of debate. Recent studies suggest that projections from the LGN might be critical, but this finding is puzzling given that the lesions causes severe cell death in the LGN. Here we demonstrate in monkeys that the surviving LGN neurons retain a remarkable level of visual function and could therefore be the source of the visual information that supports blindsight.


Assuntos
Corpos Geniculados/fisiopatologia , Degeneração Retrógrada/fisiopatologia , Escotoma/fisiopatologia , Córtex Visual/fisiopatologia , Percepção Visual , Animais , Callithrix , Feminino , Corpos Geniculados/crescimento & desenvolvimento , Masculino , Degeneração Retrógrada/complicações , Escotoma/etiologia , Visão Ocular , Córtex Visual/crescimento & desenvolvimento , Vias Visuais/crescimento & desenvolvimento , Vias Visuais/fisiopatologia
9.
eNeuro ; 5(6)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30637327

RESUMO

The study of neuronal responses to random-dot motion patterns has provided some of the most valuable insights into how the activity of neurons is related to perception. In the opposite directions of motion paradigm, the motion signal strength is decreased by manipulating the coherence of random dot patterns to examine how well the activity of single neurons represents the direction of motion. To extend this paradigm to populations of neurons, studies have used modelling based on data from pairs of neurons, but several important questions require further investigation with larger neuronal datasets. We recorded neuronal populations in the middle temporal (MT) and medial superior temporal (MST) areas of anaesthetized marmosets with electrode arrays, while varying the coherence of random dot patterns in two opposite directions of motion (left and right). Using the spike rates of simultaneously recorded neurons, we decoded the direction of motion at each level of coherence with linear classifiers. We found that the presence of correlations had a detrimental effect to decoding performance, but that learning the correlation structure produced better decoding performance compared to decoders that ignored the correlation structure. We also found that reducing motion coherence increased neuronal correlations, but decoders did not need to be optimized for each coherence level. Finally, we showed that decoder weights depend of left-right selectivity at 100% coherence, rather than the preferred direction. These results have implications for understanding how the information encoded by populations of neurons is affected by correlations in spiking activity.


Assuntos
Percepção de Movimento/fisiologia , Neurônios/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Lobo Temporal/citologia , Vias Visuais/fisiologia , Potenciais de Ação/fisiologia , Animais , Callithrix , Correlação de Dados , Feminino , Lateralidade Funcional , Masculino , Rede Nervosa/fisiologia , Estimulação Luminosa , Campos Visuais
10.
J Neurophysiol ; 118(3): 1567-1580, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28637812

RESUMO

Neurons in the middle temporal area (MT) of the primate cerebral cortex respond to moving visual stimuli. The sensitivity of MT neurons to motion signals can be characterized by using random-dot stimuli, in which the strength of the motion signal is manipulated by adding different levels of noise (elements that move in random directions). In macaques, this has allowed the calculation of "neurometric" thresholds. We characterized the responses of MT neurons in sufentanil/nitrous oxide-anesthetized marmoset monkeys, a species that has attracted considerable recent interest as an animal model for vision research. We found that MT neurons show a wide range of neurometric thresholds and that the responses of the most sensitive neurons could account for the behavioral performance of macaques and humans. We also investigated factors that contributed to the wide range of observed thresholds. The difference in firing rate between responses to motion in the preferred and null directions was the most effective predictor of neurometric threshold, whereas the direction tuning bandwidth had no correlation with the threshold. We also showed that it is possible to obtain reliable estimates of neurometric thresholds using stimuli that were not highly optimized for each neuron, as is often necessary when recording from large populations of neurons with different receptive field concurrently, as was the case in this study. These results demonstrate that marmoset MT shows an essential physiological similarity to macaque MT and suggest that its neurons are capable of representing motion signals that allow for comparable motion-in-noise judgments.NEW & NOTEWORTHY We report the activity of neurons in marmoset MT in response to random-dot motion stimuli of varying coherence. The information carried by individual MT neurons was comparable to that of the macaque, and the maximum firing rates were a strong predictor of sensitivity. Our study provides key information regarding the neural basis of motion perception in the marmoset, a small primate species that is becoming increasingly popular as an experimental model.


Assuntos
Percepção de Movimento , Neurônios/fisiologia , Limiar Sensorial , Lobo Temporal/fisiologia , Animais , Callithrix , Potenciais Evocados Visuais , Lobo Temporal/citologia
11.
J Comp Neurol ; 524(11): 2161-81, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27099164

RESUMO

The marmoset is an emerging animal model for large-scale attempts to understand primate brain connectivity, but achieving this aim requires the development and validation of procedures for normalization and integration of results from many neuroanatomical experiments. Here we describe a computational pipeline for coregistration of retrograde tracing data on connections of cortical areas into a 3D marmoset brain template, generated from Nissl-stained sections. The procedure results in a series of spatial transformations that are applied to the coordinates of labeled neurons in the different cases, bringing them into common stereotaxic space. We applied this procedure to 17 injections, placed in the frontal lobe of nine marmosets as part of earlier studies. Visualizations of cortical patterns of connections revealed by these injections are supplied as Supplementary Materials. Comparison between the results of the automated and human-based processing of these cases reveals that the centers of injection sites can be reconstructed, on average, to within 0.6 mm of coordinates estimated by an experienced neuroanatomist. Moreover, cell counts obtained in different areas by the automated approach are highly correlated (r = 0.83) with those obtained by an expert, who examined in detail histological sections for each individual. The present procedure enables comparison and visualization of large datasets, which in turn opens the way for integration and analysis of results from many animals. Its versatility, including applicability to archival materials, may reduce the number of additional experiments required to produce the first detailed cortical connectome of a primate brain. J. Comp. Neurol. 524:2161-2181, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.


Assuntos
Anatomia Artística , Atlas como Assunto , Encéfalo/anatomia & histologia , Callithrix/anatomia & histologia , Imageamento Tridimensional/métodos , Animais , Coloração e Rotulagem
12.
Sci Rep ; 6: 19739, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26813361

RESUMO

The ability to estimate the speed of an object irrespective of size or texture is a crucial function of the visual system. However, previous studies have suggested that the neuronal coding of speed in the middle temporal area (MT, a key cortical area for motion analysis in primates) is ambiguous, with most neurons changing their speed tuning depending on the spatial frequency (SF) of a visual pattern. Here we demonstrate that the ability of MT neurons to encode speed is markedly improved when stimuli follow a trajectory across the visual field, prior to entering their receptive fields. We also show that this effect is much less marked in the primary visual area. These results indicate that MT neurons build up on computations performed at earlier levels of the visual system to provide accurate coding of speed in natural situations, and provide additional evidence that nonlinear pooling underlie motion processing.


Assuntos
Percepção de Movimento , Movimento (Física) , Primatas , Lobo Temporal/fisiologia , Córtex Visual/fisiologia , Animais , Fenômenos Eletrofisiológicos , Neurônios/fisiologia
13.
Cereb Cortex ; 26(1): 257-267, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25246511

RESUMO

The human cerebral cortex undergoes a protracted, regionally heterogeneous development well into young adulthood. Cortical areas that expand the most during human development correspond to those that differ most markedly when the brains of macaque monkeys and humans are compared. However, it remains unclear to what extent this relationship derives from allometric scaling laws that apply to primate brains in general, or represents unique evolutionary adaptations. Furthermore, it is unknown whether the relationship only applies to surface area (SA), or also holds for cortical thickness (CT). In 331 participants aged 4 to 30, we calculated age functions of SA and CT, and examined the correspondence of human cortical development with macaque to human expansion, and with expansion across nonhuman primates. CT followed a linear negative age function from 4 to 30 years, while SA showed positive age functions until 12 years with little further development. Differential cortical expansion across primates was related to regional maturation of SA and CT, with age trajectories differing between high- and low-expanding cortical regions. This relationship adhered to allometric scaling laws rather than representing uniquely macaque-human differences: regional correspondence with human development was as large for expansion across nonhuman primates as between humans and macaque.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Neuroanatomia , Resolução de Problemas/fisiologia , Adolescente , Adulto , Animais , Evolução Biológica , Criança , Pré-Escolar , Feminino , Humanos , Macaca , Imageamento por Ressonância Magnética/métodos , Masculino , Neuroanatomia/métodos , Adulto Jovem
14.
Cereb Cortex ; 25(9): 2556-65, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24658616

RESUMO

Alzheimer's disease (AD) is regarded a human-specific condition, and it has been suggested that brain regions highly expanded in humans compared with other primates are selectively targeted. We calculated shared and unique variance in the distribution of AD atrophy accounted for by cortical expansion between macaque and human, affiliation to the default mode network (DMN), ontogenetic development and normal aging. Cortical expansion was moderately related to atrophy, but a critical discrepancy was seen in the medial temporo-parietal episodic memory network. Identification of "hotspots" and "coldspots" of expansion across several primate species did not yield compelling evidence for the hypothesis that highly expanded regions are specifically targeted. Controlling for distribution of atrophy in aging substantially attenuated the expansion-AD relationship. A path model showed that all variables explained unique variance in AD atrophy but were generally mediated through aging. This supports a systems-vulnerability model, where critical networks are subject to various negative impacts, aging in particular, rather than being selectively targeted in AD. An alternative approach is suggested, focused on the interplay of the phylogenetically old and preserved medial temporal lobe areas with more highly expanded association cortices governed by different principles of plasticity and stability.


Assuntos
Envelhecimento/patologia , Doença de Alzheimer/patologia , Mapeamento Encefálico , Córtex Cerebral/patologia , Modelos Neurológicos , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Animais , Atrofia/patologia , Feminino , Humanos , Macaca mulatta , Masculino , Pessoa de Meia-Idade
15.
Front Syst Neurosci ; 8: 123, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25071475

RESUMO

We examined the pattern of retrograde tracer distribution in the claustrum following intracortical injections into the frontal pole (area 10), and in dorsal (area 9), and ventral lateral (area 12) regions of the rostral prefrontal cortex in the tufted capuchin monkey (Cebus apella). The resulting pattern of labeled cells was assessed in relation to the three-dimensional geometry of the claustrum, as well as recent reports of claustrum-prefrontal connections in other primates. Claustrum-prefrontal projections were extensive, and largely concentrated in the ventral half of the claustrum, especially in the rostral 2/3 of the nucleus. Our data are consistent with a topographic arrangement of claustrum-cortical connections in which prefrontal and association cortices receive connections largely from the rostral and medial claustrum. Comparative aspects of claustrum-prefrontal topography across primate species and the implications of claustrum connectivity for understanding of cortical functional networks are explored, and we hypothesize that the claustrum may play a role in controlling or switching between resting state and task-associated cortical networks.

16.
J Neurosci ; 33(38): 15120-5, 2013 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-24048842

RESUMO

The layout of areas in the cerebral cortex of different primates is quite similar, despite significant variations in brain size. However, it is clear that larger brains are not simply scaled up versions of smaller brains: some regions of the cortex are disproportionately large in larger species. It is currently debated whether these expanded areas arise through natural selection pressures for increased cognitive capacity or as a result of the application of a common developmental sequence on different scales. Here, we used computational methods to map and quantify the expansion of the cortex in simian primates of different sizes to investigate whether there is any common pattern of cortical expansion. Surface models of the marmoset, capuchin, and macaque monkey cortex were registered using the software package CARET and the spherical landmark vector difference algorithm. The registration was constrained by the location of identified homologous cortical areas. When comparing marmosets with both capuchins and macaques, we found a high degree of expansion in the temporal parietal junction, the ventrolateral prefrontal cortex, and the dorsal anterior cingulate cortex, all of which are high-level association areas typically involved in complex cognitive and behavioral functions. These expanded maps correlated well with previously published macaque to human registrations, suggesting that there is a general pattern of primate cortical scaling.


Assuntos
Mapeamento Encefálico , Córtex Cerebral/anatomia & histologia , Primatas/anatomia & histologia , Animais , Callithrix , Cebus , Diagnóstico por Computador , Feminino , Masculino , Modelos Neurológicos
17.
J Neurosci ; 33(30): 12479-89, 2013 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-23884952

RESUMO

Lesions of striate cortex [primary visual cortex (V1)] in adult primates result in blindness. In contrast, V1 lesions in neonates typically allow much greater preservation of vision, including, in many human patients, conscious perception. It is presently unknown how this marked functional difference is related to physiological changes in cortical areas that are spared by the lesions. Here we report a study of the middle temporal area (MT) of adult marmoset monkeys that received unilateral V1 lesions within 6 weeks of birth. In contrast with observations after similar lesions in adult monkeys, we found that virtually all neurons in the region of MT that was deprived of V1 inputs showed robust responses to visual stimulation. These responses were very similar to those recorded in neurons with receptive fields outside the lesion projection zones in terms of firing rate, signal-to-noise ratio, and latency. In addition, the normal retinotopic organization of MT was maintained. Nonetheless, we found evidence of a very specific functional deficit: direction selectivity, a key physiological characteristic of MT that is known to be preserved in many cells after adult V1 lesions, was absent. These results demonstrate that lesion-induced reorganization of afferent pathways is sufficient to develop robust visual function in primate extrastriate cortex, highlighting a likely mechanism for the sparing of vision after neonatal V1 lesions. However, they also suggest that interactions with V1 in early postnatal life are critical for establishing stimulus selectivity in MT.


Assuntos
Cegueira Cortical/fisiopatologia , Potenciais Evocados Visuais/fisiologia , Córtex Visual/crescimento & desenvolvimento , Córtex Visual/fisiologia , Campos Visuais/fisiologia , Fatores Etários , Animais , Mapeamento Encefálico , Callithrix , Denervação , Eletrofisiologia , Feminino , Masculino , Modelos Neurológicos , Estimulação Luminosa/métodos , Escotoma/fisiopatologia , Razão Sinal-Ruído
18.
J Comp Neurol ; 521(5): 1001-19, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22911425

RESUMO

The primary visual area (V1) forms a systematic map of the visual field, in which adjacent cell clusters represent adjacent points of visual space. A precise quantification of this map is key to understanding the anatomical relationships between neurons located in different stations of the visual pathway, as well as the neural bases of visual performance in different regions of the visual field. We used computational methods to quantify the visual topography of V1 in the marmoset (Callithrix jacchus), a small diurnal monkey. The receptive fields of neurons throughout V1 were mapped in two anesthetized animals using electrophysiological recordings. Following histological reconstruction, precise 3D reconstructions of the V1 surface and recording sites were generated. We found that the areal magnification factor (M(A) ) decreases with eccentricity following a function that has the same slope as that observed in larger diurnal primates, including macaque, squirrel, and capuchin monkeys, and humans. However, there was no systematic relationship between M(A) and polar angle. Despite individual variation in the shape of V1, the relationship between M(A) and eccentricity was preserved across cases. Comparison between V1 and the retinal ganglion cell density demonstrated preferential magnification of central space in the cortex. The size of the cortical compartment activated by a punctiform stimulus decreased from the foveal representation towards the peripheral representation. Nonetheless, the relationship between the receptive field sizes of V1 cells and the density of ganglion cells suggested that each V1 cell receives information from a similar number of retinal neurons, throughout the visual field.


Assuntos
Estimulação Luminosa , Células Ganglionares da Retina/fisiologia , Córtex Visual/anatomia & histologia , Córtex Visual/fisiologia , Campos Visuais/fisiologia , Animais , Mapeamento Encefálico , Callithrix , Contagem de Células , Eletroencefalografia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Imageamento Tridimensional , Neuroimagem , Vias Visuais/fisiologia
19.
Cereb Cortex ; 23(8): 1901-22, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22735155

RESUMO

Contemporary studies recognize 3 distinct cytoarchitectural and functional areas within the Brodmann area 8 complex, in the caudal prefrontal cortex: 8b, 8aD, and 8aV. Here, we report on the quantitative characteristics of the cortical projections to these areas, using injections of fluorescent tracers in marmoset monkeys. Area 8b was distinct from both 8aD and 8aV due to its connections with medial prefrontal, anterior cingulate, superior temporal polysensory, and ventral midline/retrosplenial areas. In contrast, areas 8aD and 8aV received the bulk of the projections from posterior parietal cortex and dorsal midline areas. In the frontal lobe, area 8aV received projections primarily from ventrolateral areas, while both 8aD and 8b received dense inputs from areas on the dorsolateral surface. Whereas area 8aD received the most significant auditory projections, these were relatively sparse, in comparison with those previously reported in macaques. Finally, area 8aV was distinct from both 8aD and 8b by virtue of its widespread input from the extrastriate visual areas. These results are compatible with a homologous organization of the prefrontal cortex in New and Old World monkeys, and suggest significant parallels between the present pathways, revealed by tract-tracing, and networks revealed by functional connectivity analysis in Old World monkeys and humans.


Assuntos
Neurônios/citologia , Córtex Pré-Frontal/anatomia & histologia , Vias Aferentes/anatomia & histologia , Animais , Callithrix , Feminino , Masculino
20.
Curr Biol ; 22(14): 1351-7, 2012 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-22704993

RESUMO

In primates, prostriata is a small area located between the primary visual cortex (V1) and the hippocampal formation. Prostriata sends connections to multisensory and high-order association areas in the temporal, parietal, cingulate, orbitofrontal, and frontopolar cortices. It is characterized by a relatively simple histological organization, alluding to an early origin in mammalian evolution. Here we show that prostriata neurons in marmoset monkeys exhibit a unique combination of response properties, suggesting a new pathway for rapid distribution of visual information in parallel with the traditionally recognized dorsal and ventral streams. Whereas the location and known connections of prostriata suggest a high-level association area, its response properties are unexpectedly simple, resembling those found in early stages of the visual processing: neurons have robust, nonadapting responses to simple stimuli, with latencies comparable to those found in V1, and are broadly tuned to stimulus orientation and spatiotemporal frequency. However, their receptive fields are enormous and form a unique topographic map that emphasizes the far periphery of the visual field. These results suggest a specialized circuit through which stimuli in peripheral vision can bypass the elaborate hierarchy of extrastriate visual areas and rapidly elicit coordinated motor and cognitive responses across multiple brain systems.


Assuntos
Callitrichinae/fisiologia , Sistema Límbico/fisiologia , Vias Visuais/fisiologia , Percepção Visual , Animais , Mapeamento Encefálico , Callitrichinae/anatomia & histologia , Sistema Límbico/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...