Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(8): e0271131, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35939438

RESUMO

Estrogens are thought to contribute to cognitive function in part by promoting the function of basal forebrain cholinergic neurons that project to the hippocampus and cortical regions including the entorhinal cortex. Reductions in estrogens may alter cognition by reducing the function of cholinergic inputs to both the hippocampus and entorhinal cortex. In the present study, we assessed the effects of ovariectomy on proteins associated with cholinergic synapses in the entorhinal cortex. Ovariectomy was conducted at PD63, and tissue was obtained on PD84 to 89 to quantify changes in the degradative enzyme acetylcholinesterase, the vesicular acetylcholine transporter, and muscarinic M1 receptor protein. Although the vesicular acetylcholine transporter was unaffected, ovariectomy reduced both acetylcholinesterase and M1 receptor protein, and these reductions were prevented by chronic replacement of 17ß-estradiol following ovariectomy. We also assessed the effects of ovariectomy on the cholinergic modulation of excitatory transmission, by comparing the effects of the acetylcholinesterase inhibitor eserine on evoked excitatory synaptic field potentials in brain slices obtained from intact rats, and from ovariectomized rats with or without 17ß-estradiol replacement. Eserine is known to prolong the effects of endogenously released acetylcholine, resulting in an M1-like mediated reduction of glutamate release at excitatory synapses. The reduction in excitatory synaptic potentials in layer II of the entorhinal cortex induced by 15-min application of 10 µM eserine was greatly reduced in slices from ovariectomized rats as compared to intact rats and ovariectomized rats with replacement of 17ß-estradiol. The reduced modulatory effect of eserine is consistent with the observed changes in cholinergic proteins, and suggests that reductions in 17ß-estradiol following ovariectomy lead to impaired cholinergic function within the entorhinal cortex.


Assuntos
Acetilcolinesterase , Córtex Entorrinal , Animais , Colinérgicos/farmacologia , Córtex Entorrinal/fisiologia , Estradiol/farmacologia , Estrogênios/farmacologia , Potenciais Pós-Sinápticos Excitadores , Feminino , Humanos , Ovariectomia , Fisostigmina/farmacologia , Ratos , Receptor Muscarínico M1 , Transmissão Sináptica/fisiologia , Proteínas Vesiculares de Transporte de Acetilcolina
2.
Addict Biol ; 25(2): e12708, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30623532

RESUMO

Drug addiction is a chronic disorder that is characterized by compulsive drug seeking and involves cycling between periods of compulsive drug use, abstinence, and relapse. In both human addicts and animal models of addiction, chronic food restriction has been shown to increase rates of relapse. Previously, our laboratory has demonstrated a robust increase in drug seeking following a period of withdrawal in chronically food-restricted rats compared with sated rats. To date, the neural mechanisms that mediate the effect of chronic food restriction on drug seeking have not been elucidated. However, the paraventricular nucleus of the thalamus (PVT) appears to be a promising target to investigate. The objective of the current study was to examine the role of the PVT in the augmentation of heroin seeking induced by chronic food restriction. Male Long-Evans rats were trained to self-administer heroin for 10 days. Rats were then removed from the training chambers and experienced a 14-day withdrawal period with either unrestricted (sated) or mildly restricted (FDR) access to food. On day 14, rats underwent a 1-hour heroin-seeking test under extinction conditions, during which neural activity in the PVT was either inhibited or increased using pharmacological or chemogenetic approaches. Unexpectedly, inhibition of the PVT did not alter heroin seeking in food-restricted or sated rats, while enhancing neural activity in the PVT-attenuated heroin seeking in food-restricted rats. These results indicate that PVT activity can modulate heroin seeking induced by chronic food restriction.


Assuntos
Comportamento Animal/efeitos dos fármacos , Privação de Alimentos/fisiologia , Dependência de Heroína/fisiopatologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Animais , Modelos Animais de Doenças , Heroína/farmacologia , Dependência de Heroína/psicologia , Masculino , Ratos , Ratos Long-Evans
3.
Front Syst Neurosci ; 13: 60, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31736718

RESUMO

The cerebellum is involved in sensorimotor, cognitive, and emotional functions through cerebello-cerebral connectivity. Cerebellar neurostimulation thus likely affects cortical circuits, as has been shown in studies using cerebellar stimulation to treat neurological disorders through modulation of frontal EEG oscillations. Here we studied the effects of different frequencies of cerebellar stimulation on oscillations and coherence in the cerebellum and prefrontal cortex in the urethane-anesthetized rat. Local field potentials were recorded in the right lateral cerebellum (Crus I/II) and bilaterally in the prefrontal cortex (frontal association area, FrA) in adult male Sprague-Dawley rats. Stimulation was delivered to the cerebellar vermis (lobule VII) using single pulses (0.2 Hz for 60 s), or repeated pulses at 1 Hz (30 s), 5 Hz (10 s), 25 Hz (2 s), and 50 Hz (1 s). Effects of stimulation were influenced by the initial state of EEG activity which varies over time during urethane-anesthesia; 1 Hz stimulation was more effective when delivered during the slow-wave state (Stage 1), while stimulation with single-pulse, 25, and 50 Hz showed stronger effects during the activated state (Stage 2). Single-pulses resulted in increases in oscillatory power in the delta and theta bands for the cerebellum, and in frequencies up to 80 Hz in cortical sites. 1 Hz stimulation induced a decrease in 0-30 Hz activity and increased activity in the 30-200 Hz range, in the right FrA. 5 Hz stimulation reduced power in high frequencies in Stage 1 and induced mixed effects during Stage 2.25 Hz stimulation increased cortical power at low frequencies during Stage 2, and increased power in higher frequency bands during Stage 1. Stimulation at 50 Hz increased delta-band power in all recording sites, with the strongest and most rapid effects in the cerebellum. 25 and 50 Hz stimulation also induced state-dependent effects on cerebello-cortical and cortico-cortical coherence at high frequencies. Cerebellar stimulation can therefore entrain field potential activity in the FrA and drive synchronization of cerebello-cortical and cortico-cortical networks in a frequency-dependent manner. These effects highlight the role of the cerebellar vermis in modulating large-scale synchronization of neural networks in non-motor frontal cortex.

4.
Cell Calcium ; 80: 103-111, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30999216

RESUMO

The entorhinal cortex plays an important role in temporal lobe processes including learning and memory, object recognition, and contextual information processing. The alteration of the strength of synaptic inputs to the lateral entorhinal cortex may therefore contribute substantially to sensory and mnemonic functions. The neuromodulatory transmitter dopamine exerts powerful effects on excitatory glutamatergic synaptic transmission in the entorhinal cortex. Interestingly, inputs from midbrain dopamine neurons appear to specifically target clusters of excitatory cells located in the superficial layers of the entorhinal cortex. We have previously demonstrated that dopamine facilitates synaptic transmission through the activation of D1-like receptors. This facilitation of synaptic transmission is dependent on both activation of classical D1-like-receptors, and upon activation of dopamine receptors linked to increases in phospholipase C, inositol triphosphate (IP3), and intracellular calcium. In the present study we combined electrophysiological recordings of evoked excitatory postsynaptic currents with imaging of intracellular calcium using the fluorescent indicator fluo-4 to monitor calcium transients evoked by dopamine in electrophysiologically identified putative fan and pyramidal cells of the lateral entorhinal cortex. Bath application of dopamine (1 µM), or the phosphatidylinositol (PI)-linked D1-like-receptor agonist SKF83959 (5 µM), induced reliable and reversible increases in fluo-4 fluorescence and excitatory postsynaptic currents in fan cells, but not in pyramidal cells. In contrast, application of the classical D1-like-receptor agonist SKF38393 (10 µM) did not result in significant increases in fluorescence. Blocking release of calcium from internal stores by loading cells with the IP3 receptor blocker heparin (1 mM) or the ryanodine receptor blocker dantrolene (20 µM) abolished both the calcium transients and the facilitation of evoked synaptic currents induced by dopamine. Dopamine also induced calcium transients in fan cells when calcium was excluded from the extracellular medium, further indicating that the calcium transients are linked to release from internal stores. These results indicate that following D1-like-receptor binding, dopamine selectively induces transient elevations in intracellular calcium via activation of IP3 and ryanodine receptors, and that these elevations are linked to the facilitation of synaptic responses in putative layer II entorhinal cortex fan cells.


Assuntos
Cálcio/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/fisiologia , Córtex Entorrinal/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/análogos & derivados , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Animais , Sinalização do Cálcio , Células Cultivadas , Agonistas de Dopamina/farmacologia , Córtex Entorrinal/patologia , Masculino , Ratos , Ratos Endogâmicos , Receptores de Dopamina D1/metabolismo
5.
Neuroscience ; 406: 325-332, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30902681

RESUMO

Serotonin (5-HT) has important effects on cognitive function within the hippocampal region where it modulates membrane potential and excitatory and inhibitory synaptic transmission. Here, we investigated how 5-HT modulates excitatory synaptic strength in layers II/III of the parasubiculum in rat brain slices. Bath-application of 1 or 10 µM 5-HT resulted in a strong, dose-dependent, and reversible reduction in the amplitude of field excitatory postsynaptic potentials (fEPSPs) recorded in the parasubiculum. The 5-HT reuptake blocker citalopram (10 µM) also reduced fEPSP amplitudes, indicating that 5-HT released within the slice inhibits synaptic transmission. The reduction of fEPSPs induced by 5-HT was blocked by the 5-HT1A receptor blocker NAN-190 (10 µM), but not by the 5-HT7 receptor blocker SB-269970 (10 µM). Moreover, the 5-HT1A agonist 8-OH-DPAT induced a reduction of fEPSP amplitude similar to that induced by 5-HT. The reduction was prevented by the 5-HT1A receptor blocker NAN-190. The reduction in fEPSPs induced by either 5-HT or by 8-OH-DPAT was accompanied by an increase in paired-pulse ratio, suggesting that it is due mainly to reduced glutamate release. Our data suggest that the effects of serotonin on cognitive function may depend in part upon a 5-HT1A-mediated reduction of excitatory synaptic transmission in the parasubiculum. This may also affect synaptic processing in the entorhinal cortex, which receives the major output projection of the parasubiculum.


Assuntos
Citalopram/farmacologia , Receptor 5-HT1A de Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Receptores de Serotonina/metabolismo , Agonistas do Receptor de Serotonina/farmacologia , Transmissão Sináptica/fisiologia
6.
Neurosci Lett ; 674: 70-74, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29524644

RESUMO

Persistent firing in layer III entorhinal cortex neurons that can be evoked during muscarinic receptor activation may contribute to mechanisms of working memory. The entorhinal cortex receives strong dopaminergic inputs which may modulate working memory for motivationally significant information. We used whole cell recordings in in vitro rat brain slices to assess the effects of dopamine on persistent firing in layer III neurons initiated by depolarizing current injection. Persistent firing during pharmacological block of ionotropic excitatory and inhibitory synaptic transmission, and in the presence of the cholinergic agonist carbachol (10 µM), was observed in 39% of layer III pyramidal cells. Addition of 1 µM dopamine suppressed the incidence of persistent firing and similarly reduced the mean probability of induction of persistent firing at each current step, without significantly affecting the latency, duration, plateau potential, or frequency of persistent firing that was induced. These results indicate that dopamine can result in a suppression of the induction of persistent firing in layer III entorhinal neurons, while still being permissive of persistent firing once it is initiated.


Assuntos
Dopamina/fisiologia , Córtex Entorrinal/fisiologia , Neurônios/fisiologia , Potenciais de Ação , Animais , Dopamina/administração & dosagem , Córtex Entorrinal/efeitos dos fármacos , Masculino , Memória de Curto Prazo/fisiologia , Neurônios/efeitos dos fármacos , Ratos Long-Evans
7.
Cereb Cortex ; 28(12): 4210-4221, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29045570

RESUMO

The infralimbic medial prefrontal cortex (IL) is important for suppressing learned behavior after extinction, but whether this function extends to responses acquired through appetitive Pavlovian conditioning is unclear. We trained male, Long-Evans rats to associate a white-noise conditional stimulus (CS; 10 s; 14 presentations per session) with 10% liquid sucrose (0.2 mL per CS presentation), and recorded entries into the fluid port during the CS. The CS was presented without sucrose in subsequent extinction and test sessions. Increasing IL activity with pretest microinfusions of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA; 0, 0.3 nmol; 0.3 µl/side) reduced the reinstatement of CS-elicited port entries. The same result was obtained when IL neurons that expressed Channelrhodopsin-2 (ChR2) were optically stimulated during CS presentations at test (473 nm, 5 ms pulses at 20 Hz for 10.2 s, unilateral). Optical stimulation of ChR2-expressing IL neurons during CS presentations also reduced spontaneous recovery and context-induced renewal. Furthermore, optical stimulation (1) during intertrial intervals had no impact on renewal, (2) depolarized ChR2-expressing IL pyramidal neurons in vitro, and (3) preferentially increased Fos in ChR2-expressing neurons. These novel converging data highlight a critical role for the IL in suppressing the return of appetitive Pavlovian-conditioned responding following extinction.


Assuntos
Condicionamento Clássico/fisiologia , Extinção Psicológica/fisiologia , Córtex Pré-Frontal/fisiologia , Células Piramidais/fisiologia , Animais , Masculino , Optogenética , Ratos Long-Evans
8.
Cerebellum ; 16(4): 802-811, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28421552

RESUMO

Local field potential (LFP) oscillations in the granule cell layer (GCL) of the cerebellar cortex have been identified previously in the awake rat and monkey during immobility. These low-frequency oscillations are thought to be generated through local circuit interactions between Golgi cells and granule cells within the GCL. Golgi cells display rhythmic firing and pacemaking properties, and also are electrically coupled through gap junctions within the GCL. Here, we tested if gap junctions in the rat cerebellar cortex contribute to the generation of LFP oscillations in the GCL. We recorded LFP oscillations under urethane anesthesia, and examined the effects of local infusion of gap junction blockers on 5-15 Hz oscillations. Local infusion of the gap junction blockers carbenoxolone and mefloquine resulted in significant decreases in the power of oscillations over a 30-min period, but the power of oscillations was unchanged in control experiments following vehicle injections. In addition, infusion of gap junction blockers had no significant effect on multi-unit activity, suggesting that the attenuation of low-frequency oscillations was likely due to reductions in electrical coupling rather than a decreased excitability within the granule cell layer. Our results indicate that electrical coupling among the Golgi cell networks in the cerebellar cortex contributes to the local circuit mechanisms that promote the occurrence of GCL LFP slow oscillations in the anesthetized rat.


Assuntos
Ondas Encefálicas/fisiologia , Cerebelo/metabolismo , Junções Comunicantes/metabolismo , Neurônios/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Anestésicos Intravenosos/farmacologia , Animais , Ondas Encefálicas/efeitos dos fármacos , Carbenoxolona/farmacologia , Fármacos do Sistema Nervoso Central/farmacologia , Cerebelo/citologia , Cerebelo/efeitos dos fármacos , Junções Comunicantes/efeitos dos fármacos , Masculino , Mefloquina/farmacologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Ratos Sprague-Dawley , Uretana/farmacologia
9.
J Neurophysiol ; 116(2): 658-70, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27146979

RESUMO

The superficial layers of the entorhinal cortex receive sensory and associational cortical inputs and provide the hippocampus with the majority of its cortical sensory input. The parasubiculum, which receives input from multiple hippocampal subfields, sends its single major output projection to layer II of the entorhinal cortex, suggesting that it may modulate processing of synaptic inputs to the entorhinal cortex. Indeed, stimulation of the parasubiculum can enhance entorhinal responses to synaptic input from the piriform cortex in vivo. Theta EEG activity contributes to spatial and mnemonic processes in this region, and the current study assessed how stimulation of the parasubiculum with either single pulses or short, five-pulse, theta-frequency trains may modulate synaptic responses in layer II entorhinal stellate neurons evoked by stimulation of layer I afferents in vitro. Parasubicular stimulation pulses or trains suppressed responses to layer I stimulation at intervals of 5 ms, and parasubicular stimulation trains facilitated layer I responses at a train-pulse interval of 25 ms. This suggests that firing of parasubicular neurons during theta activity may heterosynaptically enhance incoming sensory inputs to the entorhinal cortex. Bath application of the hyperpolarization-activated cation current (Ih) blocker ZD7288 enhanced the facilitation effect, suggesting that cholinergic inhibition of Ih may contribute. In addition, repetitive pairing of parasubicular trains and layer I stimulation induced a lasting depression of entorhinal responses to layer I stimulation. These findings provide evidence that theta activity in the parasubiculum may promote heterosynaptic modulation effects that may alter sensory processing in the entorhinal cortex.


Assuntos
Vias Aferentes/fisiologia , Córtex Entorrinal/citologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/fisiologia , Sinapses/fisiologia , Análise de Variância , Animais , Bicuculina/análogos & derivados , Bicuculina/farmacologia , Fármacos Cardiovasculares/farmacologia , Estimulação Elétrica , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Antagonistas de Receptores de GABA-A/farmacologia , Masculino , Técnicas de Patch-Clamp , Ácidos Fosfínicos/farmacologia , Pirimidinas/farmacologia , Ratos , Ratos Long-Evans , Sinapses/efeitos dos fármacos , Fatores de Tempo , Valina/análogos & derivados , Valina/farmacologia
10.
Anesth Analg ; 122(6): 1818-25, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26836135

RESUMO

BACKGROUND: Thalamocortical electroencephalographic rhythms in gamma (30-80 Hz) and high-gamma (80-200 Hz) ranges have been linked to arousal and conscious processes. We have recently shown that propofol causes a concentration-dependent attenuation of the power of thalamocortical rhythms in the 50 to 200 Hz range and that this effect is far more pronounced for the thalamus. To determine whether similar attenuation occurs with other anesthetics, we characterized the concentration-effect relationship of the inhaled anesthetic isoflurane on the spectral power of these rhythms. METHODS: Local field potentials were recorded from the barrel cortex and ventroposteromedial thalamic nucleus in 9 chronically instrumented rats to measure spectral power in the gamma/high-gamma range (30-200 Hz). Rats were placed in an airtight chamber and isoflurane was administered at 0.75%, 1.1%, and 1.5% concentrations. Spectral power was assessed during baseline, at the 3 isoflurane concentrations after 30 minutes for equilibration, and during recovery over 4 frequency bands (30-50, 51-75, 76-125, and 126-200 Hz). Unconsciousness was defined as sustained loss of righting reflex. Multiple linear regression was used to model the change in power (after logarithmic transformation) as a function of concentration and recording site. P values were corrected for multiple comparisons. RESULTS: Unconsciousness occurred at the 1.1% concentration in all animals. Isoflurane caused a robust (P ≤ 0.008) linear concentration-dependent attenuation of cortical and thalamic power in the 30 to 200 Hz range. The concentration-effect slope for the thalamus was steeper than for the cortex in the 51 to 75 Hz (P = 0.029) and 76 to 200 Hz (P < 0.001) ranges but not for the 30 to 50 Hz range (P = 0.320). Comparison with our previously published propofol data showed that slope for cortical power was steeper with isoflurane than with propofol for all frequency bands (P = 0.033). For thalamic power, the slope differences between isoflurane and propofol were not statistically significant (0.087 ≤ P ≤ 0.599). CONCLUSIONS: Isoflurane causes a concentration-dependent attenuation of the power of thalamocortical rhythms in the 30 to 200 Hz range, and this effect is more pronounced for the thalamus than for the cortex for frequencies >50 Hz. In comparison with propofol, isoflurane caused a greater attenuation in the cortex, but the effects on the thalamus were similar. Isoflurane and propofol cause common alterations of fast thalamocortical rhythms that may constitute an electrophysiologic signature of the anesthetized state.


Assuntos
Anestésicos Inalatórios/administração & dosagem , Córtex Cerebral/efeitos dos fármacos , Eletroencefalografia , Ritmo Gama/efeitos dos fármacos , Isoflurano/administração & dosagem , Tálamo/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Córtex Cerebral/fisiologia , Estado de Consciência/efeitos dos fármacos , Relação Dose-Resposta a Droga , Masculino , Ratos Long-Evans , Reflexo de Endireitamento/efeitos dos fármacos , Processamento de Sinais Assistido por Computador , Tálamo/fisiologia , Fatores de Tempo
11.
PLoS One ; 10(7): e0131948, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26133167

RESUMO

The lateral entorhinal cortex receives strong inputs from midbrain dopamine neurons that can modulate its sensory and mnemonic function. We have previously demonstrated that 1 µM dopamine facilitates synaptic transmission in layer II entorhinal cortex cells via activation of D1-like receptors, increased cAMP-PKA activity, and a resulting enhancement of AMPA-receptor mediated currents. The present study assessed the contribution of phosphatidylinositol (PI)-linked D1 receptors to the dopaminergic facilitation of transmission in layer II of the rat entorhinal cortex, and the involvement of phospholipase C activity and release of calcium from internal stores. Whole-cell patch-clamp recordings of glutamate-mediated evoked excitatory postsynaptic currents were obtained from pyramidal and fan cells. Activation of D1-like receptors using SKF38393, SKF83959, or 1 µM dopamine induced a reversible facilitation of EPSCs which was abolished by loading cells with either the phospholipase C inhibitor U-73122 or the Ca2+ chelator BAPTA. Neither the L-type voltage-gated Ca2+ channel blocker nifedipine, nor the L/N-type channel blocker cilnidipine, blocked the facilitation of synaptic currents. However, the facilitation was blocked by blocking Ca2+ release from internal stores via inositol 1,4,5-trisphosphate (InsP3) receptors or ryanodine receptors. Follow-up studies demonstrated that inhibiting CaMKII activity with KN-93 failed to block the facilitation, but that application of the protein kinase C inhibitor PKC(19-36) completely blocked the dopamine-induced facilitation. Overall, in addition to our previous report indicating a role for the cAMP-PKA pathway in dopamine-induced facilitation of synaptic transmission, we demonstrate here that the dopaminergic facilitation of synaptic responses in layer II entorhinal neurons also relies on a signaling cascade dependent on PI-linked D1 receptors, PLC, release of Ca2+ from internal stores, and PKC activation which is likely dependent upon both DAG and enhanced intracellular Ca2+. These signaling pathways may collaborate to enhance sensory and mnemonic function in the entorhinal cortex during tonic release of dopamine.


Assuntos
Córtex Entorrinal/metabolismo , Ácido Glutâmico/metabolismo , Fosfatidilinositóis/metabolismo , Receptores Dopaminérgicos/metabolismo , Transmissão Sináptica/fisiologia , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/análogos & derivados , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Dopamina/farmacologia , Agonistas de Dopamina/farmacologia , Córtex Entorrinal/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Long-Evans , Transmissão Sináptica/efeitos dos fármacos
12.
Front Syst Neurosci ; 8: 145, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25309348

RESUMO

Circadian rhythms modulate behavioral processes over a 24 h period through clock gene expression. What is largely unknown is how these molecular influences shape neural activity in different brain areas. The clock gene Per2 is rhythmically expressed in the striatum and the cerebellum and its expression is linked with daily fluctuations in extracellular dopamine levels and D2 receptor activity. Electrophysiologically, dopamine depletion enhances striatal local field potential (LFP) oscillations. We investigated if LFP oscillations and synchrony were influenced by time of day, potentially via dopamine mechanisms. To assess the presence of a diurnal effect, oscillatory power and coherence were examined in the striatum and cerebellum of rats under urethane anesthesia at four different times of day zeitgeber time (ZT1, 7, 13 and 19-indicating number of hours after lights turned on in a 12:12 h light-dark cycle). We also investigated the diurnal response to systemic raclopride, a D2 receptor antagonist. Time of day affected the proportion of LFP oscillations within the 0-3 Hz band and the 3-8 Hz band. In both the striatum and the cerebellum, slow oscillations were strongest at ZT1 and weakest at ZT13. A 3-8 Hz oscillation was present when the slow oscillation was lowest, with peak 3-8 Hz activity occurring at ZT13. Raclopride enhanced the slow oscillations, and had the greatest effect at ZT13. Within the striatum and with the cerebellum, 0-3 Hz coherence was greatest at ZT1, when the slow oscillations were strongest. Coherence was also affected the most by raclopride at ZT13. Our results suggest that neural oscillations in the cerebellum and striatum, and the synchrony between these areas, are modulated by time of day, and that these changes are influenced by dopamine manipulation. This may provide insight into how circadian gene transcription patterns influence network electrophysiology. Future experiments will address how these network alterations are linked with behavior.

13.
Behav Brain Funct ; 9: 37, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-24093833

RESUMO

BACKGROUND: The lateral entorhinal cortex receives inputs from ventral tegmental area dopamine neurons that are activated by exposure to food-related cues, and exogenously applied dopamine is known to modulate excitatory synaptic responses within the entorhinal cortex. METHODS: The present study used in vivo synaptic field potential recording techniques to determine how exposure to cues associated with food reward modulates synaptic responses in the entorhinal cortex of the awake rat. Chronically implanted electrodes were used to monitor synaptic potentials in the entorhinal cortex evoked by stimulation of the piriform (olfactory) cortex, and to determine how synaptic responses are modulated by food-related cues. RESULTS: The amplitudes of evoked synaptic responses were reduced during exposure to cues associated with delivery of chocolate, and during delivery of chocolate for consumption at unpredictable intervals. Reductions in synaptic responses were not well predicted by changes in behavioural mobility, and were not fully blocked by systemic injection of either the D1-like receptor antagonist SCH23390, or the muscarinic receptor antagonist scopolamine. However, the reduction in synaptic responses was blocked by injection of the D2-like receptor antagonist eticlopride. CONCLUSIONS: Exposure to cues associated with palatable food results in a suppression of synaptic responses in olfactory inputs to the entorhinal cortex that is mediated in part by activation of dopamine D2 receptors.


Assuntos
Sinais (Psicologia) , Córtex Entorrinal/fisiologia , Potenciais Evocados/fisiologia , Receptores de Dopamina D2/fisiologia , Recompensa , Animais , Benzazepinas/farmacologia , Antagonistas de Dopamina/farmacologia , Antagonistas dos Receptores de Dopamina D2 , Córtex Entorrinal/efeitos dos fármacos , Potenciais Evocados/efeitos dos fármacos , Masculino , Condutos Olfatórios/efeitos dos fármacos , Condutos Olfatórios/fisiologia , Ratos , Ratos Long-Evans , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de Dopamina D1/fisiologia , Salicilamidas/farmacologia , Olfato
14.
Neurosci Lett ; 554: 11-5, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24012918

RESUMO

The entorhinal cortex is thought to play roles in sensory and mnemonic function, and the cholinergic suppression of the strength of synaptic inputs is likely to have important impacts on these processes. Field excitatory postsynaptic potentials (fEPSPs) in the medial entorhinal cortex evoked by stimulation of the piriform cortex are suppressed during theta EEG activity in behaving animals, and cholinergic receptor activation suppresses synaptic responses both in vivo, and in layer II entorhinal neurons in vitro. Here, we have used in vitro field potential recordings to investigate the transmitter receptors that mediate the cholinergic suppression of synaptic responses in layer I inputs to layer II of the medial entorhinal cortex. Bath-application of the cholinergic agonist carbachol suppressed the amplitude of fEPSPs with an EC50 of 5.3µM, and enhanced paired-pulse ratio. The M2/M4 preferring receptor blocker methoctramine, or the M4 receptor blocker PD102807, did not prevent the cholinergic suppression. However, the M1/M4 receptor blocker pirenzepine and the M1 receptor blocker VU0255035 reduced the suppression, suggesting that the cholinergic suppression of synaptic responses in the entorhinal cortex is dependent in large part on activation of M1 receptors.


Assuntos
Carbacol/farmacologia , Córtex Entorrinal/fisiologia , Agonistas Muscarínicos/farmacologia , Receptor Muscarínico M1/fisiologia , Transmissão Sináptica , Animais , Córtex Entorrinal/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores , Técnicas In Vitro , Antagonistas Muscarínicos/farmacologia , Ratos
15.
Behav Brain Res ; 252: 266-74, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23747609

RESUMO

The entorhinal cortex receives inputs from sensory and associational cortices, as well as a substantial input from midbrain dopaminergic neurons. Dopamine is likely to modulate the responsiveness of entorhinal cortex neurons to sensory inputs, and excitatory synaptic responses in layers I/II of the entorhinal cortex in vitro can be either facilitated or suppressed by dopamine depending upon the concentration applied. Rewarding stimulation of the lateral hypothalamus leads to activation of dopamine neurons, and the present study evaluated the effect of rewarding stimulation on synaptic responses in the lateral entorhinal cortex evoked by stimulation of the primary olfactory (piriform) cortex in behaving rats. Rewarding brain stimulation reduced the amplitude of synaptic responses in the entorhinal cortex evoked by single pulses delivered to the piriform cortex at intervals of 100-500 ms following the train. Synaptic responses were suppressed when stimulation trains were delivered at a fixed interval, or when trains were initiated by the animal pressing a bar. The suppression depended on the strength of stimulation trains; delivery of higher frequency trains that were sufficient to induce maximal, or 50% of maximal, rates of bar-pressing resulted in significant suppression effects, but lower frequency trains did not. Systemic administration of the dopamine D2 receptor antagonist eticlopride, but not the D1 receptor antagonist SCH23390 or the muscarinic antagonist scopolamine, blocked the suppression of synaptic responses. Results suggest that rewarding brain stimulation leads to a phasic increase in dopamine in the entorhinal cortex resulting in a D2 receptor-dependent suppression of excitatory synaptic responses, and that a similar synaptic modulation may be induced by stimuli associated with appetitive motivation and reward.


Assuntos
Dopamina/farmacologia , Córtex Entorrinal/efeitos dos fármacos , Região Hipotalâmica Lateral/fisiologia , Recompensa , Transmissão Sináptica/fisiologia , Animais , Benzazepinas/farmacologia , Biofísica , Antagonistas de Dopamina/farmacologia , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Técnicas In Vitro , Masculino , Antagonistas Muscarínicos/farmacologia , Vias Neurais/fisiologia , Ratos , Ratos Long-Evans , Salicilamidas/farmacologia , Escopolamina/farmacologia , Autoestimulação , Transmissão Sináptica/efeitos dos fármacos
16.
PLoS One ; 8(3): e58901, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23520542

RESUMO

The parasubiculum (PaS) is a component of the hippocampal formation that sends its major output to layer II of the entorhinal cortex. The PaS receives strong cholinergic innervation from the basal forebrain that is likely to modulate neuronal excitability and contribute to theta-frequency network activity. The present study used whole cell current- and voltage-clamp recordings to determine the effects of cholinergic receptor activation on layer II PaS neurons. Bath application of carbachol (CCh; 10-50 µM) resulted in a dose-dependent depolarization of morphologically-identified layer II stellate and pyramidal cells that was not prevented by blockade of excitatory and inhibitory synaptic inputs. Bath application of the M1 receptor antagonist pirenzepine (1 µM), but not the M2-preferring antagonist methoctramine (1 µM), blocked the depolarization, suggesting that it is dependent on M1 receptors. Voltage-clamp experiments using ramped voltage commands showed that CCh resulted in the gradual development of an inward current that was partially blocked by concurrent application of the selective Kv7.2/3 channel antagonist XE-991, which inhibits the muscarine-dependent K(+) current I M. The remaining inward current also reversed near EK and was inhibited by the K(+) channel blocker Ba(2+), suggesting that M1 receptor activation attenuates both I M as well as an additional K(+) current. The additional K(+) current showed rectification at depolarized voltages, similar to K(+) conductances mediated by Kir 2.3 channels. The cholinergic depolarization of layer II PaS neurons therefore appears to occur through M1-mediated effects on I M as well as an additional K(+) conductance.


Assuntos
Potenciais da Membrana/fisiologia , Neurônios/metabolismo , Células Piramidais/metabolismo , Receptor Muscarínico M1/metabolismo , Animais , Antracenos/farmacologia , Carbacol/farmacologia , Agonistas Colinérgicos/farmacologia , Diaminas/farmacologia , Canal de Potássio KCNQ2/antagonistas & inibidores , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/antagonistas & inibidores , Canal de Potássio KCNQ3/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Antagonistas Muscarínicos/farmacologia , Neurônios/citologia , Parassimpatolíticos/farmacologia , Pirenzepina/farmacologia , Células Piramidais/citologia , Ratos , Ratos Long-Evans , Receptor Muscarínico M1/agonistas , Receptor Muscarínico M1/antagonistas & inibidores
17.
Cell Rep ; 3(1): 173-85, 2013 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-23291093

RESUMO

The transmembrane protein deleted in colorectal cancer (DCC) and its ligand, netrin-1, regulate synaptogenesis during development, but their function in the mature central nervous system is unknown. Given that DCC promotes cell-cell adhesion, is expressed by neurons, and activates proteins that signal at synapses, we hypothesized that DCC expression by neurons regulates synaptic function and plasticity in the adult brain. We report that DCC is enriched in dendritic spines of pyramidal neurons in wild-type mice, and we demonstrate that selective deletion of DCC from neurons in the adult forebrain results in the loss of long-term potentiation (LTP), intact long-term depression, shorter dendritic spines, and impaired spatial and recognition memory. LTP induction requires Src activation of NMDA receptor (NMDAR) function. DCC deletion severely reduced Src activation. We demonstrate that enhancing NMDAR function or activating Src rescues LTP in the absence of DCC. We conclude that DCC activation of Src is required for NMDAR-dependent LTP and certain forms of learning and memory.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Plasticidade Neuronal , Neurônios/metabolismo , Receptores de Superfície Celular/metabolismo , Sinapses/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Envelhecimento/metabolismo , Animais , Receptor DCC , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/ultraestrutura , Ativação Enzimática , Deleção de Genes , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/fisiopatologia , Potenciação de Longa Duração , Aprendizagem em Labirinto , Memória , Camundongos , Fatores de Crescimento Neural/metabolismo , Netrina-1 , Neurônios/patologia , Neurônios/ultraestrutura , Fosfolipase C gama/metabolismo , Fosforilação , Prosencéfalo/metabolismo , Prosencéfalo/patologia , Prosencéfalo/fisiopatologia , Ratos , Receptores de Superfície Celular/deficiência , Receptores de N-Metil-D-Aspartato/metabolismo , Frações Subcelulares/metabolismo , Sinapses/patologia , Sinapses/ultraestrutura , Proteínas Supressoras de Tumor/deficiência , Quinases da Família src/metabolismo
18.
J Neurochem ; 122(1): 147-61, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22519304

RESUMO

The mechanisms that regulate synapse formation and maintenance are incompletely understood. In particular, relatively few inhibitors of synapse formation have been identified. Receptor protein tyrosine phosphatase σ (RPTPσ), a transmembrane tyrosine phosphatase, is widely expressed by neurons in developing and mature mammalian brain, and functions as a receptor for chondroitin sulfate proteoglycans that inhibits axon regeneration following injury. In this study, we address RPTPσ function in the mature brain. We demonstrate increased axon collateral branching in the hippocampus of RPTPσ null mice during normal aging or following chemically induced seizure, indicating that RPTPσ maintains neural circuitry by inhibiting axonal branching. Previous studies demonstrated a role for pre-synaptic RPTPσ promoting synaptic differentiation during development; however, subcellular fractionation revealed enrichment of RPTPσ in post-synaptic densities. We report that neurons lacking RPTPσ have an increased density of pre-synaptic varicosities in vitro and increased dendritic spine density and length in vivo. RPTPσ knockouts exhibit an increased frequency of miniature excitatory post-synaptic currents, and greater paired-pulse facilitation, consistent with increased synapse density but reduced synaptic efficiency. Furthermore, RPTPσ nulls exhibit reduced long-term potentiation and enhanced novel object recognition memory. We conclude that RPTPσ limits synapse number and regulates synapse structure and function in the mature CNS.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Potenciação de Longa Duração/genética , Neurônios/citologia , Densidade Pós-Sináptica/genética , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Reconhecimento Psicológico/fisiologia , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Axônios/efeitos dos fármacos , Axônios/patologia , Axônios/ultraestrutura , Células Cultivadas , Córtex Cerebral/citologia , Modelos Animais de Doenças , Estimulação Elétrica , Embrião de Mamíferos , Agonistas de Aminoácidos Excitatórios/toxicidade , Ácido Caínico/toxicidade , Potenciação de Longa Duração/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Fibras Musgosas Hipocampais/fisiologia , Neurônios/efeitos dos fármacos , Testes Neuropsicológicos , Técnicas de Patch-Clamp , Densidade Pós-Sináptica/efeitos dos fármacos , Ratos , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/deficiência , Reconhecimento Psicológico/efeitos dos fármacos , Coloração pela Prata , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/genética , Estado Epiléptico/patologia
19.
Neural Plast ; 2008: 203514, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18769495

RESUMO

Dopaminergic projections to the superficial layers of the lateral entorhinal cortex can modulate the strength of olfactory inputs to the region. We have found that low concentrations of dopamine facilitate field EPSPs in the entorhinal cortex, and that higher concentrations of dopamine suppress synaptic responses. Here, we have used whole-cell current clamp recordings from layer II neurons to determine the mechanisms of the suppression. Dopamine (10 to 50 microM) hyperpolarized membrane potential and reversibly suppressed the amplitude of EPSPs evoked by layer I stimulation. Both AMPA- and NMDA-mediated components were suppressed, and paired-pulse facilitation was also enhanced indicating that the suppression is mediated largely by reduced glutamate release. Blockade of D(2)-like receptors greatly reduced the suppression of EPSPs. Dopamine also lowered input resistance, and reduced the number of action potentials evoked by depolarizing current steps. The drop in input resistance was mediated by activation of D(1)-like receptors, and was prevented by blocking K(+) channels with TEA. The dopaminergic suppression of synaptic transmission is therefore mediated by a D(2) receptor-dependent reduction in transmitter release, and a D(1) receptor-dependent increase in a K(+) conductance. This suppression of EPSPs may dampen the strength of sensory inputs during periods of elevated mesocortical dopamine activity.


Assuntos
Dopamina/fisiologia , Córtex Entorrinal/fisiologia , Transmissão Sináptica/fisiologia , Animais , Dopamina/farmacologia , Relação Dose-Resposta a Droga , Córtex Entorrinal/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Masculino , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Ratos , Ratos Long-Evans , Transmissão Sináptica/efeitos dos fármacos
20.
J Neurophysiol ; 100(5): 2746-56, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18815347

RESUMO

Ionic conductances that generate membrane potential oscillations in neurons of layer II of the parasubiculum were studied using whole cell current-clamp recordings in horizontal slices from the rat brain. Blockade of ionotropic glutamate and GABA synaptic transmission did not reduce the power of the oscillations, indicating that oscillations are not dependent on synaptic inputs. Oscillations were eliminated when cells were hyperpolarized 6-10 mV below spike threshold, indicating that they are mediated by voltage-dependent conductances. Application of TTX completely eliminated oscillations, suggesting that Na(+) currents are required for the generation of the oscillations. Oscillations were not reduced by blocking Ca(2+) currents with Cd(2+) or Ca(2+)-free artificial cerebrospinal fluid, or by blocking K(+) conductances with either 50 microM or 5 mM 4-aminopyridine (4-AP), 30 mM tetraethylammonium (TEA), or Ba(2+)(1-2 mM). Oscillations also persisted during blockade of the muscarinic-dependent K(+) current, I(M), using the selective antagonist XE-991 (10 microM). However, oscillations were significantly attenuated by blocking the hyperpolarization-activated cationic current I(h) with Cs(+) and were almost completely blocked by the more potent I(h) blocker ZD7288 (100 microM). Intrinsic membrane potential oscillations in neurons of layer II of the parasubiculum are therefore likely driven by an interaction between an inward persistent Na(+) current and time-dependent deactivation of I(h). These voltage-dependent conductances provide a mechanism for the generation of membrane potential oscillations that can help support rhythmic network activity within the parasubiculum during theta-related behaviors.


Assuntos
Relógios Biológicos/fisiologia , Hipocampo/citologia , Potenciais da Membrana/fisiologia , Neurônios/fisiologia , Ritmo Teta , 4-Aminopiridina/farmacologia , Animais , Bicuculina/farmacologia , Relógios Biológicos/efeitos dos fármacos , Relógios Biológicos/efeitos da radiação , Bloqueadores dos Canais de Cálcio/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas GABAérgicos/farmacologia , Técnicas In Vitro , Ácido Cinurênico/farmacologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/efeitos da radiação , Técnicas de Patch-Clamp/métodos , Ácidos Fosfínicos/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Propanolaminas/farmacologia , Pirimidinas/farmacologia , Ratos , Ratos Long-Evans , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia , Ritmo Teta/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA