Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 22(18): 3424-3435, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35959772

RESUMO

The polymerase chain reaction (PCR) is paramount in nucleic acid amplification testing, and for many assays, the use of PCR or qPCR is considered the 'gold standard'. While instrumentation for executing PCR has advanced over the last two decades, a growing interest in point-of-need testing has highlighted the deficit that exists for 'rapid PCR' systems. Here, we describe a field-forward prototype instrument capable of ultra-fast thermal cycling for real-time PCR amplification of DNA and RNA. The custom-designed, injection-molded microfluidic chips interface with a novel mechatronic system to complete 40 cycles of real-time PCR in under 10 minutes, an 84% reduction in time compared to a standard 50 minute assay. Such rapid amplification is enabled by two thermoelectric Peltiers capable of efficiently heating and cooling the sample at 12 and 10 °C s-1, respectively. Judicious selection and strategic placement of the thermal cyclers and fluorescence detector relative to the microchip enable synchronized thermal cycling and fluorescence monitoring, further reducing time-to-result. Robust amplification and detection of DNA and RNA targets empowers laboratories to achieve rapid, actionable information in endless applications.


Assuntos
Microfluídica , Técnicas de Amplificação de Ácido Nucleico , DNA/genética , RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
2.
Diagnostics (Basel) ; 12(6)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35741208

RESUMO

As COVID-19 transmission control measures are gradually being lifted, a sensitive and rapid diagnostic method for large-scale screening could prove essential for monitoring population infection rates. However, many rapid workflows for SARS-CoV-2 detection and diagnosis are not amenable to the analysis of large-volume samples. Previously, our group demonstrated a technique for SARS-CoV-2 nanoparticle-facilitated enrichment and enzymatic lysis from clinical samples in under 10 min. Here, this sample preparation strategy was applied to pooled samples originating from nasopharyngeal (NP) swabs eluted in viral transport medium (VTM) and saliva samples diluted up to 1:100. This preparation method was coupled with conventional RT-PCR on gold-standard instrumentation for proof-of-concept. Additionally, real-time PCR analysis was conducted using an in-house, ultra-rapid real-time microfluidic instrument paired with an experimentally optimized rapid protocol. Following pooling and extraction from clinical samples, average cycle threshold (CT) values from resultant eluates generally increased as the pooling dilution factor increased; further, results from a double-blind study demonstrated 100% concordance with clinical values. In addition, preliminary data obtained from amplification of eluates prepared by this technique and analyzed using our portable, ultra-rapid real-time microfluidic PCR amplification instrument showed progress toward a streamlined method for rapid SARS-CoV-2 analysis from pooled samples.

3.
Anal Chem ; 94(7): 3287-3295, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35138818

RESUMO

The diversification of analytical tools for diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is imperative for effective virus surveillance and transmission control worldwide. Development of robust methods for rapid, simple isolation of viral RNA permits more expedient pathogen detection by downstream real-time reverse transcriptase polymerase chain reaction (real-time RT-PCR) to minimize stalled containment and enhance treatment efforts. Here, we describe an automatable rotationally driven microfluidic platform for enrichment and enzymatic extraction of SARS-CoV-2 RNA from multiple sample types. The multiplexed, enclosed microfluidic centrifugal device (µCD) is capable of preparing amplification-ready RNA from up to six samples in under 15 min, minimizing user intervention and limiting analyst exposure to pathogens. Sample enrichment leverages Nanotrap Magnetic Virus Particles to isolate intact SARS-CoV-2 virions from nasopharyngeal and/or saliva samples, enabling the removal of complex matrices that inhibit downstream RNA amplification and detection. Subsequently, viral capsids are lysed using an enzymatic lysis cocktail for release of pathogenic nucleic acids into a PCR-compatible buffer, obviating the need for downstream purification. Early in-tube assay characterization demonstrated comparable performance between our technique and a "gold-standard" commercial RNA extraction and purification kit. RNA obtained using the fully integrated µCDs permitted reliable SARS-CoV-2 detection by real-time RT-PCR. Notably, we successfully analyzed full-process controls, positive clinical nasopharyngeal swabs suspended in viral transport media, and spiked saliva samples, showcasing the method's broad applicability with multiple sample matrices commonly encountered in clinical diagnostics.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Microfluídica , Nasofaringe/química , RNA Viral/análise , RNA Viral/genética , Sensibilidade e Especificidade
4.
Anal Chim Acta ; 1180: 338846, 2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34538333

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a zoonotic RNA virus characterized by high transmission rates and pathogenicity worldwide. Continued control of the COVID-19 pandemic requires the diversification of rapid, easy to use, sensitive, and portable methods for SARS-CoV-2 sample preparation and analysis. Here, we propose a method for SARS-CoV-2 viral enrichment and enzymatic extraction of RNA from clinically relevant matrices in under 10 min. This technique utilizes affinity-capture hydrogel particles to concentrate SARS-CoV-2 from solution, and leverages existing PDQeX technology for RNA isolation. Characterization of our method is accomplished with reverse transcription real-time polymerase chain reaction (RT-PCR) for relative, comparative RNA detection. In a double-blind study analyzing viral transport media (VTM) obtained from clinical nasopharyngeal swabs, our sample preparation method demonstrated both comparable results to a routinely used commercial extraction kit and 100% concordance with laboratory diagnoses. Compatibility of eluates with alternative forms of analysis was confirmed using microfluidic RT-PCR (µRT-PCR), recombinase polymerase amplification (RPA), and loop-mediated isothermal amplification (LAMP). The alternative methods explored here conveyed successful amplification from all RNA eluates originating from positive clinical samples. Finally, this method demonstrated high performance within a saliva matrix across a broad range of viral titers and dilutions up to 90% saliva matrix, and sets the stage for miniaturization to the microscale.


Assuntos
COVID-19 , Pandemias , Teste para COVID-19 , Humanos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , RNA Viral/genética , SARS-CoV-2
5.
Electrophoresis ; 39(18): 2340-2343, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29600574

RESUMO

The attached carbohydrates at the highly conserved asparagine-linked glycosylation site in the CH 2 domain of the fragment crystallizable (Fc) region of monoclonal antibody therapeutics can play an essential role in their mechanism of action, including ADCC, CDC, anti-inflammatory functions, and serum half-life. Thus, this particular glycosylation represents one of the important critical quality attributes (CQA) of therapeutic monoclonal antibodies, which should be closely monitored and controlled during all stages of biopharmaceutical manufacturing. To study Fc glycosylation related quantitative critical quality attributes, the N-glycan pool of adalimumab (Humira® ) was spiked with increasing amounts of mannose-5 oligosaccharide, a glycan with high CQA importance. The method enabled precise quantitative CQA assessment with high detection sensitivity.


Assuntos
Adalimumab/análise , Fragmentos Fc das Imunoglobulinas/química , Asparagina/química , Eletroforese Capilar , Glicosilação , Humanos , Manose/química , Polissacarídeos/química
6.
Anal Chem ; 88(23): 11364-11367, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27813405

RESUMO

Despite the ever growing use of capillary electrophoresis in biomedical research and the biopharmaceutical industry, the development of data interpretation methods is lagging behind. In this paper we report the design and implementation of a coinjected triple-internal standard method to alleviate the need of an accompanying run of the maltooligosaccharide ladder for glucose unit (GU) calculation. Based on the migration times of the coinjected standards of maltose, maltotriose, and maltopentadecaose (bracketing the peaks of interest), a data processing approach was designed and developed to set up a virtual ladder that was used for GU calculation. The data processing was tested in terms of the calculated GU values of human IgG glycans, and the resulting relative standard deviation was ≤1.07%. This approach readily supports high-throughput capillary electrophoresis systems by significantly speeding up the processing time for glycan structural assignment.


Assuntos
Imunoglobulina G/química , Polissacarídeos/análise , Configuração de Carboidratos , Eletroforese Capilar , Ensaios de Triagem em Larga Escala , Humanos
7.
Anal Chem ; 82(22): 9476-83, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21028888

RESUMO

A sheathless interface making use of a porous tip has been used for coupling capillary electrophoresis and electrospray ionization mass spectrometry. First, effective flow rates using the interface have been characterized. It was found that the interface is capable of generating a stable spray with flow rates ranging from below 10 nL/min to >340 nL/min, enabling its use in either the mass or concentration-sensitive region of the electrospray process. Subsequently, by analyzing peptide mixtures of increasing complexity, we have demonstrated that this platform provides exquisite sensitivity enabling the detection of very low amounts of materials with very high resolving power. Transient isotachophoresis (t-ITP) can also be integrated with this setup to increase the mass loading of the system while maintaining peak efficiency and resolution. Concentration limits of detection in the subnanomolar or nanomolar range can be achieved with or without t-ITP, respectively. The application of a vacuum at the inlet of the separation capillary further allowed the peak capacity of the system to be improved while also enhancing its efficiency. As a final step in this study, it was demonstrated that the intrinsic properties of the interface allows the use of coated noncharged surfaces so that very high peak capacities can be achieved.


Assuntos
Eletroforese Capilar/métodos , Isotacoforese/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Bovinos , Eletricidade , Ácido Fluorídrico/química , Cinética , Peptídeos/análise , Peptídeos/isolamento & purificação , Porosidade
8.
Electrophoresis ; 30(23): 4049-58, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19960469

RESUMO

A systematic study of two-step CIEF analysis was completed to identify key components that could be optimized to enhance the performance of mAb analysis by CIEF. Resolution between mAb isoforms was increased by selecting a narrow detector aperture, utilizing chemical rather than pressure mobilization, and improving protein solubility by incorporating urea into the carrier ampholyte (CA) solutions. Loss of the extreme pI CAs and sample components by the bidirectional ITP inherent to IEF was avoided by setting the concentration of the phosphoric acid anolyte to 200 mM and sodium hydroxide catholyte to 300 mM and by adding sufficient amounts of an acidic (pI<3) and basic (10

Assuntos
Eletroforese Capilar/métodos , Focalização Isoelétrica/métodos , Misturas Anfolíticas/química , Anticorpos Monoclonais/química , Peptídeos/química , Isoformas de Proteínas/química , Reprodutibilidade dos Testes , Ureia/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...