Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
bioRxiv ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38645052

RESUMO

Genomic scientists have long been promised cheaper DNA sequencing, but deep whole genomes are still costly, especially when considered for large cohorts in population-level studies. More affordable options include microarrays + imputation, whole exome sequencing (WES), or low-pass whole genome sequencing (WGS) + imputation. WES + array + imputation has recently been shown to yield 99% of association signals detected by WGS. However, a method free from ascertainment biases of arrays or the need for merging different data types that still benefits from deeper exome coverage to enhance novel coding variant detection does not exist. We developed a new, combined, "Blended Genome Exome" (BGE) in which a whole genome library is generated, an aliquot of that genome is amplified by PCR, the exome regions are selected and enriched, and the genome and exome libraries are combined back into a single tube for sequencing (33% exome, 67% genome). This creates a single CRAM with a low-coverage whole genome (2-3x) combined with a higher coverage exome (30-40x). This BGE can be used for imputing common variants throughout the genome as well as for calling rare coding variants. We tested this new method and observed >99% r 2 concordance between imputed BGE data and existing 30x WGS data for exome and genome variants. BGE can serve as a useful and cost-efficient alternative sequencing product for genomic researchers, requiring ten-fold less sequencing compared to 30x WGS without the need for complicated harmonization of array and sequencing data.

3.
Nat Microbiol ; 7(5): 630-639, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35505248

RESUMO

Recurrent urinary tract infections (rUTIs) are a major health burden worldwide, with history of infection being a significant risk factor. While the gut is a known reservoir for uropathogenic bacteria, the role of the microbiota in rUTI remains unclear. We conducted a year-long study of women with (n = 15) and without (n = 16) history of rUTI, from whom we collected urine, blood and monthly faecal samples for metagenomic and transcriptomic interrogation. During the study 24 UTIs were reported, with additional samples collected during and after infection. The gut microbiome of individuals with a history of rUTI was significantly depleted in microbial richness and butyrate-producing bacteria compared with controls, reminiscent of other inflammatory conditions. However, Escherichia coli gut and bladder populations were comparable between cohorts in both relative abundance and phylogroup. Transcriptional analysis of peripheral blood mononuclear cells revealed expression profiles indicative of differential systemic immunity between cohorts. Altogether, these results suggest that rUTI susceptibility is in part mediated through the gut-bladder axis, comprising gut dysbiosis and differential immune response to bacterial bladder colonization, manifesting in symptoms.


Assuntos
Infecções por Escherichia coli , Microbioma Gastrointestinal , Infecções Urinárias , Disbiose , Escherichia coli , Infecções por Escherichia coli/microbiologia , Feminino , Humanos , Leucócitos Mononucleares , Masculino , Infecções Urinárias/microbiologia
4.
Genome Med ; 14(1): 37, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35379360

RESUMO

BACKGROUND: Carbapenem-resistant Enterobacterales (CRE) are an urgent global health threat. Inferring the dynamics of local CRE dissemination is currently limited by our inability to confidently trace the spread of resistance determinants to unrelated bacterial hosts. Whole-genome sequence comparison is useful for identifying CRE clonal transmission and outbreaks, but high-frequency horizontal gene transfer (HGT) of carbapenem resistance genes and subsequent genome rearrangement complicate tracing the local persistence and mobilization of these genes across organisms. METHODS: To overcome this limitation, we developed a new approach to identify recent HGT of large, near-identical plasmid segments across species boundaries, which also allowed us to overcome technical challenges with genome assembly. We applied this to complete and near-complete genome assemblies to examine the local spread of CRE in a systematic, prospective collection of all CRE, as well as time- and species-matched carbapenem-susceptible Enterobacterales, isolated from patients from four US hospitals over nearly 5 years. RESULTS: Our CRE collection comprised a diverse range of species, lineages, and carbapenem resistance mechanisms, many of which were encoded on a variety of promiscuous plasmid types. We found and quantified rearrangement, persistence, and repeated transfer of plasmid segments, including those harboring carbapenemases, between organisms over multiple years. Some plasmid segments were found to be strongly associated with specific locales, thus representing geographic signatures that make it possible to trace recent and localized HGT events. Functional analysis of these signatures revealed genes commonly found in plasmids of nosocomial pathogens, such as functions required for plasmid retention and spread, as well survival against a variety of antibiotic and antiseptics common to the hospital environment. CONCLUSIONS: Collectively, the framework we developed provides a clearer, high-resolution picture of the epidemiology of antibiotic resistance importation, spread, and persistence in patients and healthcare networks.


Assuntos
Carbapenêmicos , Transferência Genética Horizontal , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Humanos , Plasmídeos/genética , Estudos Prospectivos
5.
Nature ; 604(7906): 509-516, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35396579

RESUMO

Rare coding variation has historically provided the most direct connections between gene function and disease pathogenesis. By meta-analysing the whole exomes of 24,248 schizophrenia cases and 97,322 controls, we implicate ultra-rare coding variants (URVs) in 10 genes as conferring substantial risk for schizophrenia (odds ratios of 3-50, P < 2.14 × 10-6) and 32 genes at a false discovery rate of <5%. These genes have the greatest expression in central nervous system neurons and have diverse molecular functions that include the formation, structure and function of the synapse. The associations of the NMDA (N-methyl-D-aspartate) receptor subunit GRIN2A and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptor subunit GRIA3 provide support for dysfunction of the glutamatergic system as a mechanistic hypothesis in the pathogenesis of schizophrenia. We observe an overlap of rare variant risk among schizophrenia, autism spectrum disorders1, epilepsy and severe neurodevelopmental disorders2, although different mutation types are implicated in some shared genes. Most genes described here, however, are not implicated in neurodevelopment. We demonstrate that genes prioritized from common variant analyses of schizophrenia are enriched in rare variant risk3, suggesting that common and rare genetic risk factors converge at least partially on the same underlying pathogenic biological processes. Even after excluding significantly associated genes, schizophrenia cases still carry a substantial excess of URVs, which indicates that more risk genes await discovery using this approach.


Assuntos
Mutação , Transtornos do Neurodesenvolvimento , Esquizofrenia , Estudos de Casos e Controles , Exoma , Predisposição Genética para Doença/genética , Humanos , Transtornos do Neurodesenvolvimento/genética , Receptores de N-Metil-D-Aspartato/genética , Esquizofrenia/genética
6.
Nat Genet ; 54(5): 541-547, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35410376

RESUMO

We report results from the Bipolar Exome (BipEx) collaboration analysis of whole-exome sequencing of 13,933 patients with bipolar disorder (BD) matched with 14,422 controls. We find an excess of ultra-rare protein-truncating variants (PTVs) in patients with BD among genes under strong evolutionary constraint in both major BD subtypes. We find enrichment of ultra-rare PTVs within genes implicated from a recent schizophrenia exome meta-analysis (SCHEMA; 24,248 cases and 97,322 controls) and among binding targets of CHD8. Genes implicated from genome-wide association studies (GWASs) of BD, however, are not significantly enriched for ultra-rare PTVs. Combining gene-level results with SCHEMA, AKAP11 emerges as a definitive risk gene (odds ratio (OR) = 7.06, P = 2.83 × 10-9). At the protein level, AKAP-11 interacts with GSK3B, the hypothesized target of lithium, a primary treatment for BD. Our results lend support to BD's polygenicity, demonstrating a role for rare coding variation as a significant risk factor in BD etiology.


Assuntos
Transtorno Bipolar , Esquizofrenia , Proteínas de Ancoragem à Quinase A/genética , Transtorno Bipolar/genética , Exoma/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Esquizofrenia/genética , Sequenciamento do Exoma
7.
Cell Genom ; 2(10): 100192, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36777996

RESUMO

Biobanks facilitate genome-wide association studies (GWASs), which have mapped genomic loci across a range of human diseases and traits. However, most biobanks are primarily composed of individuals of European ancestry. We introduce the Global Biobank Meta-analysis Initiative (GBMI)-a collaborative network of 23 biobanks from 4 continents representing more than 2.2 million consented individuals with genetic data linked to electronic health records. GBMI meta-analyzes summary statistics from GWASs generated using harmonized genotypes and phenotypes from member biobanks for 14 exemplar diseases and endpoints. This strategy validates that GWASs conducted in diverse biobanks can be integrated despite heterogeneity in case definitions, recruitment strategies, and baseline characteristics. This collaborative effort improves GWAS power for diseases, benefits understudied diseases, and improves risk prediction while also enabling the nomination of disease genes and drug candidates by incorporating gene and protein expression data and providing insight into the underlying biology of human diseases and traits.

8.
Am J Hum Genet ; 108(4): 656-668, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33770507

RESUMO

Genetic studies in underrepresented populations identify disproportionate numbers of novel associations. However, most genetic studies use genotyping arrays and sequenced reference panels that best capture variation most common in European ancestry populations. To compare data generation strategies best suited for underrepresented populations, we sequenced the whole genomes of 91 individuals to high coverage as part of the Neuropsychiatric Genetics of African Population-Psychosis (NeuroGAP-Psychosis) study with participants from Ethiopia, Kenya, South Africa, and Uganda. We used a downsampling approach to evaluate the quality of two cost-effective data generation strategies, GWAS arrays versus low-coverage sequencing, by calculating the concordance of imputed variants from these technologies with those from deep whole-genome sequencing data. We show that low-coverage sequencing at a depth of ≥4× captures variants of all frequencies more accurately than all commonly used GWAS arrays investigated and at a comparable cost. Lower depths of sequencing (0.5-1×) performed comparably to commonly used low-density GWAS arrays. Low-coverage sequencing is also sensitive to novel variation; 4× sequencing detects 45% of singletons and 95% of common variants identified in high-coverage African whole genomes. Low-coverage sequencing approaches surmount the problems induced by the ascertainment of common genotyping arrays, effectively identify novel variation particularly in underrepresented populations, and present opportunities to enhance variant discovery at a cost similar to traditional approaches.


Assuntos
Análise Mutacional de DNA/economia , Análise Mutacional de DNA/normas , Variação Genética/genética , Genética Populacional/economia , África , Análise Mutacional de DNA/métodos , Genética Populacional/métodos , Genoma Humano/genética , Estudo de Associação Genômica Ampla , Equidade em Saúde , Humanos , Microbiota , Sequenciamento Completo do Genoma/economia , Sequenciamento Completo do Genoma/normas
9.
BMC Microbiol ; 21(1): 53, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33596852

RESUMO

BACKGROUND: Urinary tract infections (UTIs) affect 15 million women each year in the United States, with > 20% experiencing frequent recurrent UTIs. A recent placebo-controlled clinical trial found a 39% reduction in UTI symptoms among recurrent UTI sufferers who consumed a daily cranberry beverage for 24 weeks. Using metagenomic sequencing of stool from a subset of these trial participants, we assessed the impact of cranberry consumption on the gut microbiota, a reservoir for UTI-causing pathogens such as Escherichia coli, which causes > 80% of UTIs. RESULTS: The overall taxonomic composition, community diversity, carriage of functional pathways and gene families, and relative abundances of the vast majority of observed bacterial taxa, including E. coli, were not changed significantly by cranberry consumption. However, one unnamed Flavonifractor species (OTU41), which represented ≤1% of the overall metagenome, was significantly less abundant in cranberry consumers compared to placebo at trial completion. Given Flavonifractor's association with negative human health effects, we sought to determine OTU41 characteristic genes that may explain its differential abundance and/or relationship to key host functions. Using comparative genomic and metagenomic techniques, we identified genes in OTU41 related to transport and metabolism of various compounds, including tryptophan and cobalamin, which have been shown to play roles in host-microbe interactions. CONCLUSION: While our results indicated that cranberry juice consumption had little impact on global measures of the microbiome, we found one unnamed Flavonifractor species differed significantly between study arms. This suggests further studies are needed to assess the role of cranberry consumption and Flavonifractor in health and wellbeing in the context of recurrent UTI. TRIAL REGISTRATION: Clinical trial registration number: ClinicalTrials.gov NCT01776021 .


Assuntos
Bactérias/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Extratos Vegetais/administração & dosagem , Vaccinium macrocarpon/química , Adulto , Bactérias/classificação , Bactérias/genética , Bebidas , Método Duplo-Cego , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/fisiologia , Humanos , Metagenoma , Metagenômica/métodos , Pessoa de Meia-Idade , Reinfecção/microbiologia , Reinfecção/prevenção & controle , Infecções Urinárias/microbiologia , Infecções Urinárias/prevenção & controle
10.
Science ; 371(6529)2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33303686

RESUMO

Analysis of 772 complete severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes from early in the Boston-area epidemic revealed numerous introductions of the virus, a small number of which led to most cases. The data revealed two superspreading events. One, in a skilled nursing facility, led to rapid transmission and significant mortality in this vulnerable population but little broader spread, whereas other introductions into the facility had little effect. The second, at an international business conference, produced sustained community transmission and was exported, resulting in extensive regional, national, and international spread. The two events also differed substantially in the genetic variation they generated, suggesting varying transmission dynamics in superspreading events. Our results show how genomic epidemiology can help to understand the link between individual clusters and wider community spread.


Assuntos
COVID-19/epidemiologia , Genoma Viral , Filogenia , SARS-CoV-2/genética , Boston/epidemiologia , COVID-19/transmissão , Surtos de Doenças , Monitoramento Epidemiológico , Humanos
11.
medRxiv ; 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32869040

RESUMO

SARS-CoV-2 has caused a severe, ongoing outbreak of COVID-19 in Massachusetts with 111,070 confirmed cases and 8,433 deaths as of August 1, 2020. To investigate the introduction, spread, and epidemiology of COVID-19 in the Boston area, we sequenced and analyzed 772 complete SARS-CoV-2 genomes from the region, including nearly all confirmed cases within the first week of the epidemic and hundreds of cases from major outbreaks at a conference, a nursing facility, and among homeless shelter guests and staff. The data reveal over 80 introductions into the Boston area, predominantly from elsewhere in the United States and Europe. We studied two superspreading events covered by the data, events that led to very different outcomes because of the timing and populations involved. One produced rapid spread in a vulnerable population but little onward transmission, while the other was a major contributor to sustained community transmission, including outbreaks in homeless populations, and was exported to several other domestic and international sites. The same two events differed significantly in the number of new mutations seen, raising the possibility that SARS-CoV-2 superspreading might encompass disparate transmission dynamics. Our results highlight the failure of measures to prevent importation into MA early in the outbreak, underscore the role of superspreading in amplifying an outbreak in a major urban area, and lay a foundation for contact tracing informed by genetic data.

12.
Mol Psychiatry ; 25(10): 2455-2467, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31591465

RESUMO

Schizophrenia is a common, chronic and debilitating neuropsychiatric syndrome affecting tens of millions of individuals worldwide. While rare genetic variants play a role in the etiology of schizophrenia, most of the currently explained liability is within common variation, suggesting that variation predating the human diaspora out of Africa harbors a large fraction of the common variant attributable heritability. However, common variant association studies in schizophrenia have concentrated mainly on cohorts of European descent. We describe genome-wide association studies of 6152 cases and 3918 controls of admixed African ancestry, and of 1234 cases and 3090 controls of Latino ancestry, representing the largest such study in these populations to date. Combining results from the samples with African ancestry with summary statistics from the Psychiatric Genomics Consortium (PGC) study of schizophrenia yielded seven newly genome-wide significant loci, and we identified an additional eight loci by incorporating the results from samples with Latino ancestry. Leveraging population differences in patterns of linkage disequilibrium, we achieve improved fine-mapping resolution at 22 previously reported and 4 newly significant loci. Polygenic risk score profiling revealed improved prediction based on trans-ancestry meta-analysis results for admixed African (Nagelkerke's R2 = 0.032; liability R2 = 0.017; P < 10-52), Latino (Nagelkerke's R2 = 0.089; liability R2 = 0.021; P < 10-58), and European individuals (Nagelkerke's R2 = 0.089; liability R2 = 0.037; P < 10-113), further highlighting the advantages of incorporating data from diverse human populations.


Assuntos
População Negra/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Hispânico ou Latino/genética , Esquizofrenia/genética , Feminino , Loci Gênicos , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genética
13.
Thorax ; 74(9): 882-889, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31048508

RESUMO

BACKGROUND: While the international spread of multidrug-resistant (MDR) Mycobacterium tuberculosis strains is an acknowledged public health threat, a broad and more comprehensive examination of the global spread of MDR-tuberculosis (TB) using whole-genome sequencing has not yet been performed. METHODS: In a global dataset of 5310 M. tuberculosis whole-genome sequences isolated from five continents, we performed a phylogenetic analysis to identify and characterise clades of MDR-TB with respect to geographic dispersion. RESULTS: Extensive international dissemination of MDR-TB was observed, with identification of 32 migrant MDR-TB clades with descendants isolated in 17 unique countries. Relatively recent movement of strains from both Beijing and non-Beijing lineages indicated successful global spread of varied genetic backgrounds. Migrant MDR-TB clade members shared relatively recent common ancestry, with a median estimate of divergence of 13-27 years. Migrant extensively drug-resistant (XDR)-TB clades were not observed, although development of XDR-TB within migratory MDR-TB clades was common. CONCLUSIONS: Application of genomic techniques to investigate global MDR migration patterns revealed extensive global spread of MDR clades between countries of varying TB burden. Further expansion of genomic studies to incorporate isolates from diverse global settings into a single analysis, as well as data sharing platforms that facilitate genomic data sharing across country lines, may allow for future epidemiological analyses to monitor for international transmission of MDR-TB. In addition, efforts to perform routine whole-genome sequencing on all newly identified M. tuberculosis, like in England, will serve to better our understanding of the transmission dynamics of MDR-TB globally.


Assuntos
Saúde Global , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/genética , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Sequenciamento Completo do Genoma , Humanos , Epidemiologia Molecular , Filogenia
14.
Front Microbiol ; 9: 1901, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30186248

RESUMO

Clonal complex 5 methicillin-resistant Staphylococcus aureus (CC5-MRSA) includes multiple prevalent clones that cause hospital-associated infections in the Western Hemisphere. Here, we present a phylogenomic study of these MRSA to reveal their phylogeny, spatial and temporal population structure, and the evolution of selected traits. We studied 598 genome sequences, including 409 newly generated sequences, from 11 countries in Central, North, and South America, and references from Asia and Europe. An early-branching CC5-Basal clade is well-dispersed geographically, is methicillin-susceptible and MRSA predominantly of ST5-IV such as the USA800 clone, and includes separate subclades for avian and porcine strains. In the early 1970s and early 1960s, respectively, two clades appeared that subsequently underwent major expansions in the Western Hemisphere: a CC5-I clade in South America and a CC5-II clade largely in Central and North America. The CC5-I clade includes the ST5-I Chilean/Cordobes clone, and the ST228-I South German clone as an early offshoot, but is distinct from other ST5-I clones from Europe that nest within CC5-Basal. The CC5-II clade includes divergent strains of the ST5-II USA100 clone, various other clones, and most known vancomycin-resistant strains of S. aureus, but is distinct from ST5-II strain N315 from Japan that nests within CC5-Basal. The recombination rate of CC5 was much lower than has been reported for other S. aureus genetic backgrounds, which indicates that recurrence of vancomycin resistance in CC5 is not likely due to an enhanced promiscuity. An increased number of antibiotic resistances and decreased number of toxins with distance from the CC5 tree root were observed. Of note, the expansions of the CC5-I and CC5-II clades in the Western Hemisphere were preceded by convergent gains of resistance to fluoroquinolone, macrolide, and lincosamide antibiotics, and convergent losses of the staphylococcal enterotoxin p (sep) gene from the immune evasion gene cluster of phage ϕSa3. Unique losses of surface proteins were also noted for these two clades. In summary, our study has determined the relationships of different clades and clones of CC5 and has revealed genomic changes for increased antibiotic resistance and decreased virulence associated with the expansions of these MRSA in the Western Hemisphere.

15.
Proc Natl Acad Sci U S A ; 114(5): 1135-1140, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28096418

RESUMO

Carbapenem-resistant Enterobacteriaceae (CRE) are among the most severe threats to the antibiotic era. Multiple different species can exhibit resistance due to many different mechanisms, and many different mobile elements are capable of transferring resistance between lineages. We prospectively sampled CRE from hospitalized patients from three Boston-area hospitals, together with a collection of CRE from a single California hospital, to define the frequency and characteristics of outbreaks and determine whether there is evidence for transfer of strains within and between hospitals and the frequency with which resistance is transferred between lineages or species. We found eight species exhibiting resistance, with the majority of our sample being the sequence type 258 (ST258) lineage of Klebsiella pneumoniae There was very little evidence of extensive hospital outbreaks, but a great deal of variation in resistance mechanisms and the genomic backgrounds carrying these mechanisms. Local transmission was evident in clear phylogeographic structure between the samples from the two coasts. The most common resistance mechanisms were KPC (K. pneumoniae carbapenemases) beta-lactamases encoded by blaKPC2, blaKPC3, and blaKPC4, which were transferred between strains and species by seven distinct subgroups of the Tn4401 element. We also found evidence for previously unrecognized resistance mechanisms that produced resistance when transformed into a susceptible genomic background. The extensive variation, together with evidence of transmission beyond limited clonal outbreaks, points to multiple unsampled transmission chains throughout the continuum of care, including asymptomatic carriage and transmission of CRE. This finding suggests that to control this threat, we need an aggressive approach to surveillance and isolation.


Assuntos
Carbapenêmicos/farmacologia , Elementos de DNA Transponíveis/genética , Surtos de Doenças , Infecções por Enterobacteriaceae/microbiologia , Enterobacteriaceae/efeitos dos fármacos , Fatores R/genética , Resistência beta-Lactâmica/genética , Proteínas de Bactérias/genética , Boston/epidemiologia , Células Clonais , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/microbiologia , Infecção Hospitalar/transmissão , Enterobacteriaceae/enzimologia , Enterobacteriaceae/genética , Infecções por Enterobacteriaceae/epidemiologia , Infecções por Enterobacteriaceae/transmissão , Variação Genética , Genoma Bacteriano , Humanos , Estudos Prospectivos , Alinhamento de Sequência , Transformação Bacteriana , Resistência beta-Lactâmica/fisiologia , beta-Lactamases/genética
16.
Nat Genet ; 49(3): 395-402, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28092681

RESUMO

Multidrug-resistant tuberculosis (MDR-TB), caused by drug-resistant strains of Mycobacterium tuberculosis, is an increasingly serious problem worldwide. Here we examined a data set of whole-genome sequences from 5,310 M. tuberculosis isolates from five continents. Despite the great diversity of these isolates with respect to geographical point of isolation, genetic background and drug resistance, the patterns for the emergence of drug resistance were conserved globally. We have identified harbinger mutations that often precede multidrug resistance. In particular, the katG mutation encoding p.Ser315Thr, which confers resistance to isoniazid, overwhelmingly arose before mutations that conferred rifampicin resistance across all of the lineages, geographical regions and time periods. Therefore, molecular diagnostics that include markers for rifampicin resistance alone will be insufficient to identify pre-MDR strains. Incorporating knowledge of polymorphisms that occur before the emergence of multidrug resistance, particularly katG p.Ser315Thr, into molecular diagnostics should enable targeted treatment of patients with pre-MDR-TB to prevent further development of MDR-TB.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/genética , Antituberculosos/uso terapêutico , Proteínas de Bactérias/genética , Catalase/genética , Genômica/métodos , Humanos , Isoniazida/uso terapêutico , Mutação/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Polimorfismo Genético/genética , Rifampina/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
17.
J Clin Microbiol ; 55(2): 457-469, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27903602

RESUMO

The emergence and spread of drug-resistant Mycobacterium tuberculosis (DR-TB) are critical global health issues. Eastern Europe has some of the highest incidences of DR-TB, particularly multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB. To better understand the genetic composition and evolution of MDR- and XDR-TB in the region, we sequenced and analyzed the genomes of 138 M. tuberculosis isolates from 97 patients sampled between 2010 and 2013 in Minsk, Belarus. MDR and XDR-TB isolates were significantly more likely to belong to the Beijing lineage than to the Euro-American lineage, and known resistance-conferring loci accounted for the majority of phenotypic resistance to first- and second-line drugs in MDR and XDR-TB. Using a phylogenomic approach, we estimated that the majority of MDR-TB was due to the recent transmission of already-resistant M. tuberculosis strains rather than repeated de novo evolution of resistance within patients, while XDR-TB was acquired through both routes. Longitudinal sampling of M. tuberculosis from 34 patients with treatment failure showed that most strains persisted genetically unchanged during treatment or acquired resistance to fluoroquinolones. HIV+ patients were significantly more likely to have multiple infections over time than HIV- patients, highlighting a specific need for careful infection control in these patients. These data provide a better understanding of the genomic composition, transmission, and evolution of MDR- and XDR-TB in Belarus and will enable improved diagnostics, treatment protocols, and prognostic decision-making.


Assuntos
Evolução Molecular , Genoma Bacteriano , Mycobacterium tuberculosis/genética , Análise de Sequência de DNA , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Antituberculosos/farmacologia , Transmissão de Doença Infecciosa , Genótipo , Humanos , Estudos Longitudinais , Epidemiologia Molecular , República de Belarus/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/transmissão
18.
Genome Announc ; 4(2)2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26941159

RESUMO

We report the whole-genome sequencing of two extensively drug-resistant tuberculosis strains belonging to the Euro-American S lineage. The RSA 114 strain showed single-nucleotide polymorphisms predicted to have drug efflux activity.

19.
PLoS Med ; 12(9): e1001880, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26418737

RESUMO

BACKGROUND: The continued advance of antibiotic resistance threatens the treatment and control of many infectious diseases. This is exemplified by the largest global outbreak of extensively drug-resistant (XDR) tuberculosis (TB) identified in Tugela Ferry, KwaZulu-Natal, South Africa, in 2005 that continues today. It is unclear whether the emergence of XDR-TB in KwaZulu-Natal was due to recent inadequacies in TB control in conjunction with HIV or other factors. Understanding the origins of drug resistance in this fatal outbreak of XDR will inform the control and prevention of drug-resistant TB in other settings. In this study, we used whole genome sequencing and dating analysis to determine if XDR-TB had emerged recently or had ancient antecedents. METHODS AND FINDINGS: We performed whole genome sequencing and drug susceptibility testing on 337 clinical isolates of Mycobacterium tuberculosis collected in KwaZulu-Natal from 2008 to 2013, in addition to three historical isolates, collected from patients in the same province and including an isolate from the 2005 Tugela Ferry XDR outbreak, a multidrug-resistant (MDR) isolate from 1994, and a pansusceptible isolate from 1995. We utilized an array of whole genome comparative techniques to assess the relatedness among strains, to establish the order of acquisition of drug resistance mutations, including the timing of acquisitions leading to XDR-TB in the LAM4 spoligotype, and to calculate the number of independent evolutionary emergences of MDR and XDR. Our sequencing and analysis revealed a 50-member clone of XDR M. tuberculosis that was highly related to the Tugela Ferry XDR outbreak strain. We estimated that mutations conferring isoniazid and streptomycin resistance in this clone were acquired 50 y prior to the Tugela Ferry outbreak (katG S315T [isoniazid]; gidB 130 bp deletion [streptomycin]; 1957 [95% highest posterior density (HPD): 1937-1971]), with the subsequent emergence of MDR and XDR occurring 20 y (rpoB L452P [rifampicin]; pncA 1 bp insertion [pyrazinamide]; 1984 [95% HPD: 1974-1992]) and 10 y (rpoB D435G [rifampicin]; rrs 1400 [kanamycin]; gyrA A90V [ofloxacin]; 1995 [95% HPD: 1988-1999]) prior to the outbreak, respectively. We observed frequent de novo evolution of MDR and XDR, with 56 and nine independent evolutionary events, respectively. Isoniazid resistance evolved before rifampicin resistance 46 times, whereas rifampicin resistance evolved prior to isoniazid only twice. We identified additional putative compensatory mutations to rifampicin in this dataset. One major limitation of this study is that the conclusions with respect to ordering and timing of acquisition of mutations may not represent universal patterns of drug resistance emergence in other areas of the globe. CONCLUSIONS: In the first whole genome-based analysis of the emergence of drug resistance among clinical isolates of M. tuberculosis, we show that the ancestral precursor of the LAM4 XDR outbreak strain in Tugela Ferry gained mutations to first-line drugs at the beginning of the antibiotic era. Subsequent accumulation of stepwise resistance mutations, occurring over decades and prior to the explosion of HIV in this region, yielded MDR and XDR, permitting the emergence of compensatory mutations. Our results suggest that drug-resistant strains circulating today reflect not only vulnerabilities of current TB control efforts but also those that date back 50 y. In drug-resistant TB, isoniazid resistance was overwhelmingly the initial resistance mutation to be acquired, which would not be detected by current rapid molecular diagnostics employed in South Africa that assess only rifampicin resistance.


Assuntos
Antituberculosos/farmacologia , Tuberculose Extensivamente Resistente a Medicamentos/genética , Genoma Bacteriano , Mycobacterium tuberculosis/genética , Adulto , Surtos de Doenças , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico , Tuberculose Extensivamente Resistente a Medicamentos/epidemiologia , Feminino , Humanos , Masculino , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/isolamento & purificação , Análise de Sequência de DNA , África do Sul/epidemiologia
20.
Science ; 345(6202): 1369-72, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25214632

RESUMO

In its largest outbreak, Ebola virus disease is spreading through Guinea, Liberia, Sierra Leone, and Nigeria. We sequenced 99 Ebola virus genomes from 78 patients in Sierra Leone to ~2000× coverage. We observed a rapid accumulation of interhost and intrahost genetic variation, allowing us to characterize patterns of viral transmission over the initial weeks of the epidemic. This West African variant likely diverged from central African lineages around 2004, crossed from Guinea to Sierra Leone in May 2014, and has exhibited sustained human-to-human transmission subsequently, with no evidence of additional zoonotic sources. Because many of the mutations alter protein sequences and other biologically meaningful targets, they should be monitored for impact on diagnostics, vaccines, and therapies critical to outbreak response.


Assuntos
Surtos de Doenças , Ebolavirus/genética , Monitoramento Epidemiológico , Doença pelo Vírus Ebola/transmissão , Doença pelo Vírus Ebola/virologia , Sequência de Bases , Ebolavirus/isolamento & purificação , Variação Genética , Genoma Viral/genética , Genômica/métodos , Doença pelo Vírus Ebola/epidemiologia , Humanos , Mutação , Análise de Sequência de DNA , Serra Leoa/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...